
AD-A259 018

AFIT/GCS/ENG/92D-13

CREATING AND MANIPULATING A DOMAIN-SPECIFIC
FORMAL OBJECT BASE TO SUPPORT A

DOMAIN-ORIENTED APPLICATION
COMPOSITION SYSTEM

THESIS OTIC
Mary Anne Randour Y ,. E C T E-

Captain, USAF JAN 0 8 1993
AFIT/GCS/ENG/92D-13

93-00151

Approved for public release; distribution unlimited

93 1 04 095



AFIT/GCS/ENG/92D-13

CREATING AND MANIPULATING A DOMAIN-SPECIFIC

FORMAL OBJECT BASE TO SUPPORT A

DOMAIN-ORIENTED APPLICATION

COMPOSITION SYSTEM

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technolog3yL._

Air University 4l• 2I•zh?

In Partial Fulfillment of the

Requirements for the Degree of Accesion For

Master of Science NTIS CRA&I
DTIC TAB
Unannounced
Justification

Mary Anne Randour, B.S. By.........
Distribution I

Captain, USAF Availability Codes

Avail and lor

Dist Special

December, 1992

Approved for public release; distribution unlimited



Acknowledgements

I would like to thank my advisor, Maj David Luginbuhl, for all of his guidance,

support, grammar lessons, and patience. I also want to thank Maj Bailor for his guidance,

not just in this specific research, but also in how to research a problem in general. Thanks

also to Dr. Potoczny for being on my committee.

I owe a lot to the rest of the research group for all of their help and Support. Cindy

Anderson helped me more than she'll ever know just by listening and offering solutions.

Mary Boom, proving that school does not have to be all work, used her sense of humor

to bring "color" to many of us. Thanks also the the rest of the group: Brad Mallare

(especially for all of his "geek" humor), Rusty Baldwin, and Tim Weide. A special thanks

goes to Chuck Wright who was always there to offer support (or an offer to go get ice cream

and/or chocolate which was even better!). These people and everyone else who spent the

summer working in the computer lab made this thesis work much more enjoyable. Finally,

I would like to thank my family for all of their support, for teaching me the importance of

education, and for never letting me lose sight of what is truly important in life.

Mary Anne Randour

ii



Table of Contents

Page

Acknowledgements .......... .................................. ii

Table of Contents ........... .................................. iii

List of Figures ............. .................................... x

Abstract .............. ........................................ xi

I. Plan of Attack .......... ................................ 1-1

1.1 Background ......... ............................ 1-1

1.2 Problem .......... .............................. 1-3

1.3 Summary of Current Knowledge ....................... 1-4

1.4 Approach .......... ............................. 1-5

1.5 Order of Presentation ........ ...................... 1-6

II. Literature Review ........... .............................. 2-1

2.1 Introduction ......... ........................... 2-1

2.2 Current Research .................................. 2-1

2.2.1 Reusability ........ ....................... 2-1

2.2.2 Requirements Languages ..................... 2-2

2.2.3 Domain Analysis ............................ 2-3

2.2.4 Software Architecture ....... ................. 2-4

2.2.5 Program Generation ......................... 2-4

2.3 Summary .......... ............................. 2-6

111ii



Page

III. Requirements Analysis ......... ............................ 3-1

3.1 Introduction ......... ........................... 3-1

3.2 Operational Concept ............................... 3-2

3.3 General System Concept ............................ 3-4

3.3.1 Overview ......... ........................ 3-4

3.3.2 Developing a Formalized Domain Model ........... 3-6

3.3.3 Building A Structured Object Base ............... 3-9

3.3.4 Composing Applications ...................... 3-11

3.3.5 Extend Technology Base ...................... 3-13

3.3.6 Visualization ........ ...................... 3-13

3.4 Related Research ................................. 3-14

3.4.1 Hierarchical Software Systems With Reusable Compo-

nents ......... .......................... 3-14

3.4.2 Automatic Programming Technologies for Avionics Soft-

ware ......... ........................... 3-17

3.4.3 Model-Based Software Development .............. 3-19

3.4.4 Extensible Domain Models .................... 3-22

3.5 Specific System Concept ............................ 3-23

3.5.1 System Overview ........................... 3-23

3.5.2 Software Refinery ........................... 3-23

3.5.3 Object-Connection-Update Model ............... 3-26

3.6 Conclusion .................................... 3-28

IV. System Design .......... ................................ 4-1

4.1 System Design Overview ............................ 4-1

4.1.1 Design Goals ........ ...................... 4-1

4.1.2 Concept of Operations ...... ................. 4-2

4.1.3 Software System Design ....................... 4-2

iv



Page

4.2 Detailed Design ................................... 4-7

4.3 Parse ..................................... 4-7

4.3.1 Methods of Populating the Object Base ........... 4-7

4.3.2 Creating Objects ........................... 4-10

4.4 Complete Application Definition ...................... 4-13

4.4.1 Instantiate Generic Objects .................... 4-13

4.4.2 Complete Incomplete Definitions ................ 4-15

4.4.3 Load Object Instances ....................... 4-15

4.5 Edit Object Base ................................. 4-15

4.6 Save To Technology Base ........ .................... 4-16

4.7 Object Hierarchy ................................. 4-16

4.8 Data Organization ................................ 4-17

4.8.1 Technology Base ........................... 4-17

4.8.2 File Organization ........................... 4-18

4.9 Unique Names ......... .......................... 4-19

4.10 Summary ..................................... 4-19

V. Validating Domain .......... .............................. 5-1

5.1 Description of Domain .............................. 5-1

5.1.1 Primitive Objects ....... ................... 5-1

5.1.2 Creating a DIALECT Domain Model .............. 5-2

5.1.3 Update Functions ....... ................... 5-2

51 4 Inputs and Outputs ....... .................. 5-3

5.1.5 Creating a Domain-Specific Grammar ............. 5-3

5.2 System Changes ......... ......................... 5-3

5.2.1 Import Sources ............................. 5-3

5.2.2 Generic Objects ........ .................... 5-4

5.2.3 Domain-Specific Grammar. .................... 5-4

v



Page

5.3 Limitations of the Domain ....... ................... 5-5

5.3.1 Not Representative of All Domains ............... 5-5

5.3.2 Attributes ........ ........................ 5-5

5.3.3 Varying The Update Function ...... ............ 5-5

5.3.4 Import Source Types ......................... 5-5

5.3.5 Composition Constraints ...... ............... 5-6

5.3.6 Lack of Varying Functionality .................. 5-6

5.4 Limitations of the Implementation ...... ............... 5-6

5.4.1 Timing and Concurrency ..................... 5-6

5.4.2 Restrictions on Primitive Objects ................ 5-7

5.4.3 Flat Domain Model ....... .................. 5-7

5.4.4 No User-Defined Types ....... ................ 5-8

5.4.5 Unknown Types ........ .................... 5-8

5.4.6 No "Black-Box" Components ................... 5-8

5.4.7 Incomplete Error Checking .................... 5-9

5.5 Domain Analysis ................................. 5-10

5.6 Summary ......... ............................. 5-10

VI. Conclusions and Recommendations ............................ 6-1

6.1 Introduction ......... ........................... 6-1

6.2 Original Goals ......... .......................... 6-1

6.3 Results .......... .............................. 6-2

6.3.1 Development of a Domain-Specific Language . . .. 6-2

6.3.2 Role of Domain Analysis ..................... 6-4

6.3.3 REFINE Environment Is Conducive to Building Proto-

types ......... .......................... 6-4

6.4 Problem Areas ......... .......................... 6-5

6.4.1 DSL Cannot Handle All Grammar Constraints Directly 6-5

vi



Page

6.4.2 Restricted Domain Model ..................... 6-6

6.4.3 Simplistic Update Functions ...... ............. 6-6

6.4.4 Patterns of Control Not Implemented ............. 6-6

6.5 Recommendations for Future Research .................. 6-7

6.5.1 Improve Capability for Reuse ................... 6-7

6.5.2 Conduct More Research On Domain Analysis and Do-

main Modeling ........ ..................... 6-8

6.5.3 Investigate Expanding Current Architecture Model and

Other Possible Models ...... ................. 6-8

6.5.4 Expand Visual System ....................... 6-8

6.5.5 Build Technology Base Extender ................ 6-8

6.5.6 Incorporate More Use of Domain Knowledge . . .. 6-9

6.5.7 Consider Draco Approach for Further Development. 6-9

6.5.8 Add Invariants ............................ 6-10

6.5.9 Add Exception Handling ...... ............... 6-10

6.5.10 Add External Interfaces ...................... 6-10

6.5.11 Build a Specification ......................... 6-10

6.6 Conclusion .................................... 6-11

Appendix A. Software Engineer's Responsibilities .................... A-1

A.1 Building Domain Model ............................ A-1

A.1.1 Inputs and Outputs ....... .................. A-1

A.1.2 Coefficients and Update-Function ................ A-1

A.1.3 Attributes ................................ A-3

A.1.4 Make Names Unique ......................... A-3

A.1.5 Update Functions ....... ................... A-3

A.2 Grammar. ...................................... A-3

A.2.1 Keywords ........ ........................ A-5

vii



Page

A.2.2 Required and Optional Attributes ..... .......... A-5

A.2.3 Boolean Attributes ....... ................... A-5

A.2.4 Header Information ....... .................. A-5

A.2.5 Other Required Elements ..................... A-6

A.2.6 Changing the Grammar ...................... A-6

A.3 Domain Semantic Checks ........ .................... A-6

A.4 Generic Objects ......... ......................... A-7

A.4.1 Building Generic Objects ...... ............... A-7

A.4.2 Considerations .......................... A-8

A.5 Directories ......... ............................ A-9

A.6 Load Files ...................................... A-10

Appendix B. Application Specialist's Responsibilities ..... ............ B-1

B.1 Starting ......... .............................. B-1

B.2 Creating New Application Definitions ................... B-1

B.2.1 Building Input Files ......................... B-1

B.2.2 Using Generic Objects ...... ................. B-1

B.2.3 Using Existing Objects ....... ................ B-2

B.2.4 Naming Objects ........ .................... B-2

B.3 Using the Interface ................................ B-3

B.3.1 Applying Rules ....... ..................... B-3

B.3.2 Default Values ........ ..................... B-4

B.3.3 Functions Available ....... .................. B-4

BA Hints on Building Application Definitions ................ B-8

B.4.1 Modifying the Object Base .................... B-8

B.4.2 Creating New Application Definitions ............. B-9

Appendix C. Validating Domain Code ........ .................... C-1

viii



Page

Appendix D. Sample Session . .. ... .. .. ... ... .. .. .. ... . D-1

D.1 Universal Shift Register . .. .. ... ... .. .. ... .. . D-i

D.2 Binary Array Multiplier ... .. ... .. .. ... .. ... . D- 15

Appendix E. Code . ... .. .. .. ... .. ... .. ... .. .. ... . E- 1

Bibliography .. .. . .. ... .. .. .. ... .. ... .. ... .. .. ... . BIB- I

Vita .. .. .. .. .. .. .. .. .. ... ... .. .. ... .. ... .. ... . VITA- I

ix



List of Figures

Figure Page

1.1. Domain-Oriented Application Composition System ................. 1-2

1.2. Components of a Domain-Specific Language ..................... 1-4

1.3. Domain-Specific Language Usage .............................. 1-4

3.1. Roles ........... ..................................... 3-3

3.2. General System Overview ......... .......................... 3-5

3.3. Domain Model Instantiation ......... ........................ 3-8

3.4. Combining Plug-Compatible Components ....................... 3-15

3.5. APTAS ........... .................................... 3-18

3.6. OCU Subsystem Construction ........ ....................... 3-20

3.7. Overview of Specific System ........ ........................ 3-24

4.1. System Operations ....................................... 4-3

4.2. System Structure .......... .............................. 4-4

4.3. Generic Instantiation ......... ............................ 4-14

4.4. Object Hierarchy ........................................ 4-17

A.1. Sample Object Definition ......... .......................... A-2

A.2. Sample Grammar .......... .............................. A-4

A.3. Sample Generic Object ......... ........................... A-8

A.4. Example Directory Structure ................................ A-10

A.5. Sample Load File for Application Specialist ...................... A-12

A.6. Sample Load File for Software Engineer ......................... A-13

B.1. Sample Rule Search ......... ............................. B-3

D.1. Universal Shift Register ......... ........................... D-1

D.2. Binary Array Multiplier ................................... D-15

x



AFIT/GCS/ENG/92D-13

Abstract

This research investigated technology which enables sophisticated users to specify,

generate, and maintain application software in domain-oriented terms. To realize this new

technology, a development environment, called Architect, was designed and implemented.

Using canonical formal specifications of domain objects, Architect rapidly composes these

specifications into a software application and executes a prototype of that application as

a means to demonstrate its correctness before any programming language specific code is

generated. This thesis investigated populating and manipulating the formal object base

required by Architect. This object base is built using a domain-specific language (DSL)

which serves as an interface between the user and a domain model. The domain model

describes primitive domain object classes and composition rules and is formalized via a

domain modeling language. The packaging of the objects into components is defined by an

architecture model which was part of a separate thesis. The Software Refinery environment

was used to develop a methodology for defining DSLs for Architect and for manipulating

the resulting populated object base. Architect was validated using both artificial and

realistic domains and was found to be a solid foundation for an application generation

system.

xi



CREATING AND MANIPULATING A DOMAIN-SPECIFIC

FORMAL OBJECT BASE TO SUPPORT A

DOMAIN-ORIENTED APPLICATION

COMPOSITION SYSTEM

L Plan of Attack

1.1 Background

Currently, software is not keeping up with the rapidly increasing demand, and break-

throughs in hardware technology are out-pacing corresponding developments in software

engineering. To overcome this disparity, we need to develop a methodology that allows us to

generate timely, validated software that meets the user's requirements. This paradigm must

incorporate existing technologies - formal methods, reusability, object-oriented methodol-

ogy, and artificial intelligence (AI) - and combine them to produce more capability than

any of the current techniques can produce alone.

A domain-oriented application composition system, shown in Figure 1.1, may serve

as a basis for this new software engineer paradigm. This approach allows sophisticated

end users, called application specialists, to compose applications within a given domain.

The application specialist supplies application-specific information for a specification us-

ing terminology familiar to him, not the terminology typically used by software engineers.

Eventually, this interface will be visual rather than textual, making the specification pro-

cess even easier for the user. This information, combined with domain knowledge stored in

the domain model, builds a specification. Part of the structure of the application special-

ist's input is based on the architecture model used. The proposed specification can then be

executed to demonstrate its behavior, and if this prototype does not match the intended

operation, the proposed specification can be changed and the prototype regenerated until

it exhibits the desired functionality. This prototyping cycle is done without any additional
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coding (other than the initial input) and without generating a fully coded application.

When the application specialist is satisfied with the execution, he can generate a complete

formal specification. This formal specification is stored in an object (or knowledge) base

where iA can be transformed into a target application language, such as Ada, C, or even

machine level code. The benefits of this technique are obvious: end users can specify ap-

plications using a language they understand and they can develop prototypes to ensure

the final specification is complete and accurate. The tool that provides the means for the

application specialist to supply the application-specific information is a domain-specific

language (DSL).

Domain Application Software

Model Specialist Components

/ Applicaton
Domain ýInformation

Knowledge In DSL

Object Transforms Specfication Transforms A
Base

Architectural
Structure

Architecuture
Model

Figure 1.1. Domain-Oriented Application Composition System

Current technology cannot yet fully support this paradigm; much research is required

before it can be implemented. For example, the following steps are required to generate a

system capable of implementing this paradigm:

1. Define and produce domain-specific languages,

2. Develop an architectural model to define domain-specific architectures to provide an
overall structure for the applications,

3. Write transformations to manipulate the object base,
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4. Code software components conforming to the domain architecture and rules regarding
how to combine them.

1.2 Problem

The objective of this research was to investigate the development of a system to

support the paradigm described above, specifically, to create and manipulate a domain-

specific formalized object base in the Software Refinery T" Environment using a domain-

specific language and additional REFINE functions. Other research supports other aspects

of this approach; information about the implementation of software architectures can be

found in (1) and details on how to visualize this process can be found in (29).

As mentioned above, a domain-specific language is one key to this new paradigm

since it furnishes the interface between the user and the object base. However, developing

a domain-specific language is not a trivial task. As shown in Figure 1.2, a domain-specific

language must incorporate knowledge from several different disciplines. First, it must

capture the domain knowledge obtained through domain analysis, including the overall

software architecture (structure) of the domain. This knowledge is represented using an

object-oriented methodology, modeling real-world entities as objects and operations on

those objects. Following this methodology will allow users to conceptualize better the ap-

plication by allowing them to represent the application as familiar, concrete objects. Also,

the software components can be encapsulated so that they can be combined more easily

than components partitioned functionally. Finally, general knowledge about specifications

is needed so that the language can define applications. All of this knowledge must be

built into a grammar, defining a domain-specific language that can be used by a language

processing tool.

Proposed specifications, or application definitions, are written using the domain-

specific language and parsed into the REFINE object base. The grammar for the DSL is

written using the REFINE tool, DIALECT. DIALECT provides a parser that populates the

abstract syntax trees (the structural representation of the object base) based on the input

and the DIALECT domain model. DIALECT also provides a prettyprinter that prints the

abstract syntax trees in a textual format.
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Domain
Knowledge

Specification Grammar Domain
Knowledge Language

Object-Oriented
Methodology

Figure 1.2. Components of a Domain-Specific Language

Getting the specification into a formalized object base is only the start (see Fig-

ure 1.3). The specification may not be completely correct as initially stated. It may

violate axchitectural restrictions or domain restrictions, or it may not exhibit the desired

behavior. Therefore the object base must be manipulated until the application definition

complies with the architecture and domain constraints and displays the correct behavior.

Domain-Specific
Specification Domain Objects & Operations

Specific Object
Language Base

Object Base
Manipulation

Figure 1.3. Domain-Specific Language Usage

1.3 Summary of Current Knowledge

The concept of a domain-specific language has been discussed in several technical

journals and dissertations; however, very little has been written concerning the details
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of exactly what a domain-specific language is. Chapter II gives an overview of related

literature.

1.4 Approach

Developing a domain-specific language to populate a formalized object base requires

several steps. Creating a grammar that describes the language is only one step in the

process. The following were needed to develop a domain-specific language.

1. The first step was to define the term domain-specific language. Several articles in the

literature discuss domain-specific languages, but only at a high level. The definition

of a domain-specific language must include details not given in the current literature

and the language must be defined in the context of how it fits into the system being

developed as part of this research. The domain-specific language provides a front

end for the user to specify the application in an object-oriented methodology so it

must represent objects and their attributes and operations on those objects that are

familiar to the user. A domain-specific language alone cannot define the structure of

an application; it will rely on a defined architecture model to provide this framework.

2. Although domain-specific languages may not be very well defined, several require-

ments specification languages are. One or several of these could be useful as a starting

point, we investigated them to determine if they could be used. If one of these specifi-

cation languages had provided a good starting point, it would have become a starting

point for our grammar, but we found none that met our needs.

3. The next step was to develop a domain-specific language grammar for an artificial

domain and then a more realistic domain, that of digital circuits, to validate that

the implementation met the stated requirements. We began development using an

artificial domain and then moved to our realistic domain to ensure that the system

remained domain-independent and to determine what further research was required.

4. Implementation of several small specifications provided a means to evaluate the

domain-specific language. The resulting object base was the basis for the next test:

how well the specification actually described the problem. The execution of the spec-
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ification was tested as part of a separate research topic, but any problems uncovered

with the domain-specific language were fixed until the domain-specific language per-

formed correctly. This was not a pass/fail type of test like normal software testing,

rather it was used to evaluate the suitability of the domain-specific language.

1.5 Order of Presentation

Information about domain-specific languages and other related topics found in the

literature are explained in ChapterI. Chapter III details the requirements for the devel-

opment of an application composition system of which the development of domain-specific

languages is a part. This chapter also includes requirements for other research and is also

contained in (1). The overall design of an application composer as well as a detailed design

for this aspect of the system can be found in Chapter IV. Chapter V gives the results of

implementing the validating domain. The results and conclusions of this research are in

Chapter VI. Hints and guidelines for the users of this system, the software engineer and

application specialist, are listed in Appendices A and B, respectively. To aid the reader

in understanding the how this system works, a sample session is provided in Appendix D.

Finally, the REFINE code to define the validating domain model and to implement this

portion of the research are listed in Appendices C and E.
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I. Literature Review

2.1 Introduction

Very little has been written on the subject of domain-specific languages (DSLs). In

fact, the current literature only refers to the concepts and the potential uses of DSLs;

it does not give any specific information on how to implement one. However, this does

not mean that other researchers do not provide some insight into developing a DSL. This

chapter reviews information found concerning DSLs.

2.2 Current Research

Several different fields relate either directly or indirectly to the use of domain lan-

guages. Some areas provide a firm concept of the term, while other areas apply similar

ideas without specifically referring to "domain-specific languages." Most of the research

partitions the space of all possible applications into specific areas (called domains) and fol-

lows an object-oriented methodology. The reusability field gives insight into what exactly

a domain-specific language is. Since a DSL can be viewed as a specialized requirements

specification language, our DSL could be based on research done in this field. A DSL can-

not be isolated from the process of domain analysis, so we also must investigate this field.

Because we also plan to incorporate a software architecture model, we must understand

these models. Program generation and synthesis systems give examples of how a domain

language could fit into an overall system.

2.2.1 Reusability One of the early pioneers in the field of applying domain analysis

for the purpose of reusability was James Neighbors. In his research on the Draco approach

for constructing software from reusable components, Neighbors proposed using a domain

language to describe objects and operations. Neighbors also defined a domain description

that includes the following components (19:41-43):

e Parser - Defines external syntax (BNF)

e Prettyprinter - Defines how to produce external syntax of domain for all possible
program fragments
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"* Transformations - Source-to-source transformations on objects and operations in the
domain

"* Components - Specify semantics of domain, one for each object and operation in
domain, make implementation decisions

"* Procedures - Domain specific, used when transform is algorithmic in nature

In following the Draco approach, a software engineer performs domain analysis to

produce domain languages which are used to specify an application. Multiple refinements,

which make implementation decisions by restating the problem in other terms, can be

applied. The resulting specification can then be transformed and implemented by software

components (18:565-566).

Another advocate of reusability, Rub6n Prieto-Diaz, defines domain analysis as the

process used to identify, capture, and organize information. A domain language is one of

the outputs of this process (21:47-48). He further defines a domain specific language as "a

language with syntax and semantics designed to represent all valid actions and objects in

a particular domain" (22:23) and "a collection of rules that relate objects and functions

and which can be made explicit and encapsulated in a formal language and further used

as a specification language for the construction of systems in that domain" (22:26). The

domain language describes the objects and operations and becomes the framework for new

specifications (22:23-24). Prieto-Diaz only describes the ideas, he does not explain how a

DSL can be described.

2.2.2 Requirements Languages Often, requirements are specified in a natural lan-

guage, such as English. However, several different requirements languages now exist. Sol

Greenspan defined what he calls a Requirements Modeling Language (RML). RML is an

object-oriented language where objects represent real-world entities. RML uses three levels

of classification: tokens (instances of a class), classes (instances of one or more metaclasses),

and metaclasses (top-level classes). RML also uses several abstraction mechanisms:

"* Properties - Relationships between objects

"* Aggregation - Collection of objects

"* Class - Classification of objects that share common properties

"* Instances - Specific members of a class
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e Definitional Properties - General characteristics that apply to all instances of a class
or metaclass

Greenspan defines several principles that must be included in all requirements lan-

guages (9:3-4):

" The languages should allow direct and natural modeling of the world. This is best
accomplished using an object-oriented methodology where objects represent concepts
and entities and the behavior is represented by operations on the objects.

" Requirements languages should support the organization and management of large
descriptions. Greenspan recommends using abstraction principles such as aggrega-
tion, classification, and generalization to support this.

"* They should allow expression of assertions (what is true in the world), entities (ob-
jects in the world), and activities (events that cause change). RML uses three kinds
of objects and First-Order Logic (for the assertions) to accomplish this.

"* The language must be uniform in its use of basic principles so that it will be easy to
learn and use.

"* Requirements languages should be formal; their features should be defined precisely.

"* Finally, they must provide guidance in modeling large-scale problems.

2.2.3 Domain Analysis

2.2.3.1 Meta-Model/Meta-Language Neil Iscoe's research has focused on ap-

plying domain knowledge to a meta-model or meta-language to instantiate a domain model

(10:301-302). The meta-model or meta-language is a representation structure or language

used to specify the knowledge about a given domain. The formality and ability to execute

the model allow reasoning and inference to support the goals of the model being developed

(10:301). Iscoe defines the attributes for objects in the domain model to be: a unique

name, measurement scale (including unit and granularity when appropriate), set of values,

set of population parameters, initialization procedure, probability of change, and a state

transition relation (11:33). Classes consist of: a set of attributes and their subsets, a set of

functions used to create objects, a set of operations on the objects, a statistical summary,

and a set of axioms or integrity constraints (11:77).

Iscoe also defines a hierarchical decomposition of these classes that allows for inheri-

tance and aggregation (as an implicit part of domain structure) (11:121). Some classes are
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built from previously existing ones using composition. This process uses domain knowl-

edge to take the disjoint union of the sets of attributes, resolve any conflicts, eliminate

unnecessary attributes, and add new attributes as needed (11:129).

2.2.3.2 Feature Oriented Domain Analysis In their Feature-Oriented Domain

Analysis (FODA) study, the Software Engineering Institute (SEI) defines a process for

domain analysis based on describing prominent or distinctive aspects of a software system,

or features. This method is divided into three steps (12:4):

1. Context Analysis - Define the bounds of the domain

2. Domain Modeling - Describe the problems within the domain

3. Architecture Modeling - Create software architecture(s) to implement a solution in
the problem domain.

The FODA study also defines several of the roles involved in this process. The end users

and domain experts are the sources of domain information. Domain analysts organize and

compile the information which is then used by requirements analysts, software designers,

and end users (12:4). Another study by the SEI on Modeling Software Systems by Domains

refines these definitions slightly. The roles axe further described in Chapter III.

2.2.4 Software Architecture We are taking a slightly different slant to developing a

DSL; we axe incorporating a software architecture model. This is being done as a separate

thesis (1), but is related to the development of our DSL. The model we incorporated is

the Software Engineering Institute's Object Connection Update (OCU) model. The OCU

model describes objects which are grouped into subsystems to define a specific software

architecture. More details on the OCU model can be found in Chapter III and details on

this specific implementation of the OCU model can be found in (1).

2.2.5 Program Generation David Barstow defines automatic programming as a sys-

tem that allows a naive user (one who does not necessarily understand programming) to

describe a problem (3). Research has investigated automatic programming systems that

ultimately assist in transforming specifications into high-level language code. Currently,

each system only automates different portions of the whole and each takes a different

2-4



approach, but some do share several common features that can be applied to research

at AFIT. They are concerned with eliciting a formal specification from a naive user and

manipulating this specification to generate an application.

2.2.5.1 Automatic Programming Technologies for Avionics Software Lock-

heed's Software Technology Center has developed the Automatic Programming Technolo-

gies for Avionics Software (APTAS) system. APTAS allows the user to specify an ap-

plication within the target tracking domain, generates a software architecture, produces

executable intermediary code, and finally generates Ada code. The user's input is based

on pop-up question forms that guide the user through the specification process. APTAS

is explained in greater detail in Chapter III and (16).

2.2.5.2 Hierarchical Software Systems with Reusable Components Don Ba-

tory and Sean O'Malley have developed a model of hierarchical software design based on

interchangeable software components (4:2). They define components as their fundamental

units of software. Components that share common interfaces, i.e., are interchangeable,

belong to what they call a realm. Components are combined into systems according to

specific rules of composition. In this method, a domain model is a set of realms and rules

of composition. Batory and O'Malley equate this scheme to a grammar where the produc-

tions define the rules of composition and the terminals represent the components (4:4-5).

This model is discussed further in Chapter III.

2.2.5.3 Other Systems Other research projects do not specifically use domain-

specific languages, but they are implementations of systems similar to the paradigm de-

scribed above. Howard Reubenstein and Richard Waters describe a Requirements Ap-

prentice which assists an analyst in specifying a program. This system does not use a

domain-specific language, but it does use what they call a clich6 library to store infor-

mation about requirements in general and the domain in particular (25). The Kestrel

Interactive Development System (KIDS) provides a set of tools to transform specifications

into code, but unlike the others, it includes tactics designed to preserve correctness of the

program at each step of the transformation process. A domain theory, developed early in

2-5



the process, must be preserved throughout the process to ensure the final product meets the

specification and does not contradict the domain knowledge (26:1025). The Knowledge-

Based Requirements Acquisition System (KBRAS) is an Al toolkit that automates the

gathering of software requirements by eliciting information from the user. This system

is based on the idea that requirements analysis is the process of reducing domain-specific

knowledge into precise statements about the application (30:40-41).

2.3 Summary

Current research does not provide any concrete answers on how to develop a domain

language. However, valuable research has been done in related areas. Investigation into

the fields of reusability, requirements languages, and domain analysis helped us understand

what features a DSL must possess. Program generation and synthesis systems guided us

in developing an overall system that uses a DSL. Ideas from these areas have been useful

in the development of a domain language.
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III. Requirements Analysis'

3.1 Introduction

The wide availability of powerful, relatively low-cost computer hardware has led to an

explosion in the demand for computer software products to automate a multitude of new

tasks. Using traditional methods, computer scientists and programming professionals have

been unable to meet, in a timely manner, this demand for the sophisticated, large-scale,

reliable software systems required for these new applications. Clearly, a new approach to

software design and construction is needed.

Software engineering will evolve into a radically changed discipline. Soft-
ware will become adaptive and self-configuring, enabling end users to specify,
modify and maintain their own software within restricted contexts. Software
engineers will deliver knowledge-based application generators rather than un-
modifiable application programs. These generators will enable an end user
to interactively specify requirements in domain-oriented terms.... and then
automatically generate efficient code that implements these requirements. In
essence, software engineers will deliver the knowledge for generating software
rather than the software itself.

Although end users will communicate with these software generators in
domain-oriented terms, the foundation for the technology will be formal repre-
sentations... Formal languages will become the lingua franca, enabling know-
ledge-based components to be composed into larger systems. Formal specifica-
tions will be the interface between interactive problem acquisition components
and automatic program synthesis components.

Software development will evolve from an art to a true engineering dis-
cipline. Software systems will no longer be developed by handcrafting large
bodies of code. Rather, as in other engineering disciplines, components wili
be combined and specialized through a chain of value-added enhancements.
The final specializations will be done by the end user. KBSE (Knowledge
Based Software Engineering) will not replace the human software engineer;
rather, it will provide the means for leveraging human expertise and knowledge
through automated reuse. New subdisciplines, such as domain analysis and de-
sign analysis, will emerge to formalize knowledge for use in KBSE components.
(17:629-630)

'This chapter was co-written with Capt Cynthia Anderson and also appears in AFIT Technical Report
AFIT/EN/TR-92-5 and (1).
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Perhaps this vision can become a reality for selected domains, not just within the

next century as Michael Lowry predicts, but within the next few years. Research is cur-

rently underway at the Air Force Institute of Technology (AFIT) to achieve such a reality.

Developing a full-scale application generation system, which is capable of automatically

producing efficient code to satisfy user-specified requirements presented in domain-oriented

terms, is a considerable task which will require several man-years of effort. However, one

element of application generation, the combining or composing of required components into

the proper framework or architecture, is attainable in the ncar term. This chapter explores

the issues involved in developing such an end-user application composer and describes one

possible methodology for accomplishing it.

3.2 Operational Concept

Several roles are discussed in describing this new approach to software development,

an approach where the end-user generates a software application to satisfy his requirements

using the software professional's knowledge about how to generate such applications. Some

of these roles are new, others are relatively unchanged from those in traditional software

system development.

1. System Analyst - Specifies new systems in a domain (12:4). Responsible for develop-
ing the concept of operations (defining policy, strategy, and use of application) and
defining training requirements (5).

2. System Engineer - Works with the system analyst to partition the system into sub-
systems and assigns the tasks to software or hardware development, as appropriate
(2).

3. Domain Engineer - Possesses detailed knowledge about the domain an'U gathers all
the information pertinent to solving problems in that domain (12:4). Models the
real-world entities required to satisfy the policy, strategy, and use of an application
as defined by the system analyst. Determines how, if possible, these entities can be
modeled within the constraints specified by the software engineer (5).

4. Software Engineer - Designs new software systems in the domain (12:4). Responsi-
ble for defining a formalized structure for the domain knowledge and providing the
translation from the domain-specific terms to executable software (5).

5. Application Specialist - Uses systems in the domain (12:4). Familiar with the overall
domain and understands what the new application must do to meet the requirements
(a sophisticated "user"). Provides the application-specific information needed to
specify an application.
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Figure 3.1. Roles

The relationships among these roles are shown in Figure 3.1. Usually, a new sys-

tem begins with the identification of a new requirement. This requirement, if valid, is

forwarded to a system analyst who develops a concept of operations. The system analyst

works closely with the system engineer who partitions the system into software and hard-

ware subsystems. The system engineer consults the appropriate domain engineer to define

which components of his domain will be needed for software applications in the domain.

The domain engineer and the software engineer decide on which components are needed

to model the domain. The software engineer formalizes the domain knowledge provided

by the domain engineer into a domain model and its technology base. The application

specialist, using the domain model established by the software and domain engineers, cre-
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ates a specification for an application. From this specification, an automated application

composer generates a software design which is then input to a code generation capability.

3.3 General System Concept

3.3.1 Overview An overview of the application composition system's components

and their relationships to each other appears in Figure 3.2. First, domain analysis is per-

formed, which consists of gathering appropriate domain knowledge, formalizing it via a

domain modeling language, and storing it in a domain model. The structure of the do-

main model is determined, in part, by the domain modeling language (DML) chosen. The

software architecture model, like the DML, imposes a specific structure on the domain

model, on the grammar used by the application specialist, and, ultimately, on the final

application specification. The domain model is used to develop a domain-specific gram-

mar. Although it may be transparent to the application specialist, he actually uses two

grammars: one to identify domain-specific information and one to specify the architecture

of the application. The architecture grammar remains the same for different domains; only

the domain-specific grammar changes. Application-specific data is written using these two

grammars and is converted into objects in the structured object base by the parser.

The populated structured object base and information from the technology base are

combined to build an executable prototype. First, the application specialist performs se-

mantic checking on the structured object base to ensure all constraints on the system have

been met. He then executes the prototype to demonstrate the behavior of the proposed

application. If the prototype does not behave as required, the application specialist can

change the original input and re-paxse it into the structured object base. Using the knowl-

edge encoded in the domain model and the software architecture model, the structured

object base is manipulated into a formal specification for a domain-specific software archi-

tecture (DSSA). The DSSA is the system design and becomes the basis from which code

is generated. A visual system provides a graphical representation of the structured object

base and the DSSA, as well as a means to add to or modify them.

The remainder of this section describes the above concepts and activities in more

detail.
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3.3.2 Developing a Formalized Domain Model Before any applications can be com-

posed using this proposed system, the domain must be analyzed and modeled. In the

software engineering context, a domain is commonly defined as "an application area, a

field for which software systems are developed" (21:50) or "a set of current and future

applications which share a set of common capabilities and data" (12:2). Identifying the

boundaries of the domain, as well as "identifying, collecting, organizing, and representing

the relevant information in a domain based on the study of existing systems and their

development histories, knowledge captured from domain experts, underlying theory, and

emerging technology within the domain" (12:2-3), constitutes domain analysis. Domain

analysis is currently the subject of several other research efforts and is not directly ad-

dressed in this project. However, it is important to gather the basic data, formalize it, and

store it in a standard format.

3.3.2.1 Domain Knowledge Domain knowledge is the "relevant knowledge"

that results from a thorough domain analysis and later evolves naturally as more experi-

ence is gained solving problems in the domain (21:47). More specifically, domain knowledge

consists of: basic facts and relationships, problem-solving heuristics, domain-specific data

types, and descriptions of processes to apply the knowledge (3). In the context of this

project, domain knowledge includes: descriptions of domain-specific objects (including

their attributes and operations), data types, composition rules, and templates for com-

monly used architectural fragments.

3.3.2.2 Domain Modeling Language An analogy to a domain modeling lan-

guage (DML) can be found in the more familiar data definition language of a database

management system. A data definition language describes the logical structure and access

methods of a database (14), just as our DML describes the logical structure of a domain

model and defines how the objects can be accessed. A DML used to encode domain

knowledge into a domain model must be able to formally describe:

1. Object Classes: Abstractions of real-world entities of interest in the domain.

2. Operations: Behavior of the objects in the domain.
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3. Object Relationships and Constraints: Rules for relating objects (and sets of objects)
to other objects, as well as the constraints on these relationships. Examples include:

(a) Communication Structure: Message passing between/among domain classes and
operations.

(b) Composition Structure: Rules for combining domain object classes into higher-
level application classes and operations into higher-level application operations.

4. Exception Handling: What to do when an error is encountered.

To be useful in an automated system, the domain knowledge must be encoded into

a format that the software system can manipulate. This problem is analogous to encoding

knowledge in an expert system, where human knowledge is gathered and represented as

rules that allow a computer program to utilize the information. Neil Iscoe describes a

method for encoding domain knowledge into a domain model (see (11) for details). He

proposes using a domain modeling language or a meta-model as the basic framework to

instantiate a domain model based on some operational goal(s) (reasons for which the knowl-

edge will be used) (see Figure 3.3). Our operational goal is to "use the domain model,

software architecture model, and structured object base to generate a software architec-

ture for the application problem to be solved - to generate a domain-specific software

architecture" (2).

3.3.2.3 Domain Model A domain model is a "specific representation of appro-

priate aspects of an application domain" (10:302) including functions, objects, data, and

relationships (20). It is a result of expressing appropriate domain knowledge (identified by

the domain engineer) in a domain modeling language with respect to certain operational

goals (10:301-2).

Several researchers (4, 6, 7, 15) have indicated that software engineering must become

more of an engineering discipline if we are ever to reap the benefits of design reuse (increased

productivity, improved reliability, certifiability, etc.). When designing specific applications,

engineers use models, "codified bodies of scientific knowledge and technology presented

in (re)usable forms" (6:256) which are available to all practioners in various technology

bases. Reuse of these validated, commonly-used models, which are readily available in
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Figure 3.3. Domain Model Instantiation

various technology bases, allows the engineer to construct a practical, reliable solution to

the problem at hand.

Contained within our domain model is such a technology base which acts as a repos-

itory for our reusable models. In our system, these models are often referred to as compo-

nents. Using an object-based perspective, a component can represent a real-world entity,

concept or abstraction and encompasses all descriptive and state information for that en-

tity/concept/abstraction as well as its behavior (what operations or functions it performs

and/or what transformations it undergoes). Components can be primitive domain objects

as described above or a "packaging" of these objects whose structure is determined by

the software architecture model. These packaged components will be referred to as ar-

chitectural fragments since they can be used to build an application architecture. The

technology base contains templates for generic components, rules for component composi-

tion, and descriptions of primitive object behavior. The parameters required to instantiate

these generic templates will be specified by the application specialist.

Domain analysis reveals common features of the software architectures that can be

used to implement various specific applications within the domain. In addition, common

constraints are identified and codified into rules used to determine how software com-
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ponents can be legally combined. Using rules allows additional flexibility; any specific

architecture can be built as long as it meets the criteria specified by the rules.

3.3.3 Building A Structured Object Base Several steps must be taken to build the

structured object base. The following system components are essential to this phase.

3.3.3.1 Domain-Specific Language As with our domain modeling language,

an analogy to a domain-specific language (DSL) can be found in a data manipulation

language from the realm of database management systems. In the database context, a

data manipulation language allows the user of a database to retrieve, insert, delete, and

modify data stored in the database (14:13). In our context, a DSL is a language with syntax

and semantics which represents all valid objects and operations in a particular domain,

allowing modeling and specification of systems within that domain (22). According to

James Neighbors, a domain language is a machine-processable language derived from a

domain model. It is used to define components and to describe programs in each different

problem area (i.e., domain). The objects and operations represent analysis information

about a problem domain (18). In our research, a domain-specific language is defined as a

formal language used to define instances of objects and operations specific to a domain.

The objective of our DSL is to generate the structured object base needed to specify

an application architecture within a specific domain. To do so, it must be able to:

1. Instantiate objects

2. Instantiate generic objects

3. Instantiate generic architectural fragments

4. Compose the instantiated objects and architectural fragments in some meaningful
way

The object classes defined in the domain model are merely templates or patterns to

be used when constructing objects; they do not refer to specific, individual objects. The

first sentence type listed above creates specific instances of the objects in the object base.

These objects are used in building architectural fragments or as parameters for generics.

Default values can be used for attributes so these values need not be entered through the

DSL every time they are used.
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Generics, stored in the technology base, provide templates for commonly used objects

and components; thus, the application specialist need not start from scratch each time he

wants to include one of these commonly used components. Generics must be instantiated

before they can be used. Instantiation is done by specifying which model is to be used

and providing specific instances and/or other data, as required. For example, a generic

architectural fragment may use three objects of a certain class. When this generic is

instantiated, three specific object instances of the required class must be given.

3.3.3.2 Software Architecture Model In addition to identifying the objects to

be used in generating a particular application, the application specialist must indicate what

is to be done with those objects; i.e., he must identify the application operations. Domain

primitive operations, associated with primitive objects, are available in the technology base.

But how can these primitive operations be assembled (composed) into application-specific

operations? What are the rules for composing these primitive operations into application

operations? How can these rules be represented and implemented?

Software architectures provide insight into software system composition. In its most

fundamental sense, an architecture is a recognizable style or method of design and con-

struction. A software architecture has been defined as "a template for solving problems

within an application domain" (28:2-2) or "the high level packaging structure of functions

and data, their interfaces and controls, to support the implementation of applications in

a domain" (12:3). It provides a mechanism for separating "the design of (domain) models

from the design of the software" (5). This separation of domain knowledge from software

engineering knowledge allows each type of engineer to concentrate on the issues relevant to

his own area of experience, without becoming an expert in the other discipline. By focus-

ing only on the design of the software, the software engineer is able to develop simplified

packaging and control structures which can be reused across a wide variety of domains.

Because a software architecture serves as a structural framework for software develop-

ment, we can expect it to provide a consistent representation of system components as well

as the interfaces between those components. A standard representation ensures that each

component is developed in the same manner, eliminating many implementation choices and
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simplifying the development process. This standardization also results in consistent inter-

faces between all components, enabling them to be easily combined. This consistency of

component representation and interfaces should provide a suitable and flexible framework

for composing primitive operations into application-specific ones.

3.3.3.3 Architecture Grammar Certain portions of the application specialist's

input are not dependent on any particular domain; rather, they depend on the software

architecture model. These architectural aspects of the application can be specified using

a grammar common to all domains, an architecture grammar. This grammar enforces the

structure imposed by the software architecture model by defining valid sentences for pack-

aging the primitive domain objects into architectural fragments to define an application

architecture. These sentences will compose application operations using domain-specific

components described by the domain-specific grammar and other application operations.

3.3.3.4 Parser After the application specialist specifies the application com-

ponents using the domain-specific language and architecture language, the input must be

parsed into objects in the structured object base. The parser generates specific object

instances whose initial states are determined by the application specialist's input.

3.3.3.5 Structured Object Base The structured object base contains applica-

tion specific information: specific instances of domain object classes with all appropriate

attribute values for determining the object's state, as well as relationships for both do-

main objects and operations. The kinds of objects that might populate the object base

and the overall structural framework of those objects (the shape of the abstract syntax

trees) are established by the domain and software architecture models. The specific object

instances and the actual structure of the object base are determined by the application-

specific information provided by the application specialist using the DSL and architecture

grammars.

3.3.-4 Composing Applications The application composer generates the application

architecture specified by the application specialist. This is accomplished by combining the

appropriate instantiated domain objects from the structured object base in accordance
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with the domain composition rules. After the architecture is generated, its behavior can

be simulated to demonstrate its suitability and correctness. It should be noted that the

operations associated with each object in the technology base are certifiably correct; that

is, individual objects are guaranteed to behave as required. However, the specific objects

which are composed into the application may have been combined in such a way that

the composed application may not behave as expected or required. When the application

specialist is satisfied that the composed architecture is actually the one desired, he can

generate a formal specification for the architecture which can later be used to develop a

fully coded system.

3.3.•4.1 Semantic Analysis After an application is identified, the next step

is to ensure that the specified composition is appropriate; i.e., that it makes sense and

meets the constraints imposed by the composition rules. This step is accomplished via a

semantic analysis phase. As in programming language compilers, one aspect of semantic

analysis is to verify that a syntactically correct construct, which satisfies the restrictions

of the grammar in which it was written, is "legal and meaningful" (8:10). To be legal and

meaningful, the proposed application must meet certain other composition restrictions:

e.g., components must already exist before they can be used, an input to one component

must be produced as an output from another component, etc. Another aspect of semantic

analysis is to use knowledge about domain objects and typical system constructions to

assist the application specialist in choosing the components needed and in combining them

appropriately to create applications which behave as desired. Errors identified during the

semantic analysis phase must be corrected before the composition process can proceed.

3.3.4.2 Execute A composed application architecture that passes all semantic

analysis checks is legal and meaningful, but does it do what the application specialist wants

it to do? The execute component of the application composer simulates the behavior of

the architecture, using object operations which specify each component's behavior. This

behavior simulation may not be efficient or robust enough to serve as a full-scale opera-

tional system, but it provides the application specialist timely feedback on the correctness

of the specified architecture. If the application is incorrect (i.e., it does not behave as re-
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quired/expected), the application specialist reassesses the components which were used in

the application and how they were combined, creating a new or editted application to sat-

isfy his requirements. This ability to simulate execution behavior in this rapid-prototype

manner assures the application specialist that the proposed application actually behaves

correctly before a formal specification and fully-coded system are generated.

3.3.4.3 Generate Specification A legal, meaningful, and correctly composed

application provides a software architecture which satisfies the application specialist's

requirements for a particular application. The software architecture can be used as a

blueprint, template, or specification from which to design and implement a full-scale, op-

erational version of the application. The generated specification is intended to be in a

formal, machine-processable format which can be used directly by a code generation tool

to produce a fully-coded application. However, the specification format could be tailored

to provide whatever form is appropriate for the using organization: graphical, textual, etc.

3.3.5 E-tend Technology Base Eventually, the technology base, which formalizes

the knowledge about domain objects, will become outdated as understanding of the do-

main evolves and as the domain itself adapts to accommodate a changing technological

environment. Although the technology base may appear to be static, it must be dynamic

enough to accommodate this additional information as well as higher-level object classes

and operations, generic components and architectural fragments that are developed. These

additional elements give added flexibility to the application specialist because more pie-

defined components are available for future applications

A specialized set of tools allows the technology base to be modified or extended

to include this additional or revised domain knowledge. The extender must enforce the

structure dictated by the domain modeling language and the software architecture model.

3.3.6 Visualization "A picture is worth a thousand words." This old adage is

still true today, especially when dealing with complex and abstract concepts. The visual

system provides the application specialist with a graphical view of the structured object

base, as well as the application software architecture generated to satisfy his requirements.

3-13



By reviewing these "pictures," the application specialist can more fully understand the

components available for composition and the application just composed. Moreover, the

visual system will also be capable of inserting new instances of domain objects into the

structured object base, editing domain objects already in the object base, and executing

the application composer. It also provides the capability to extend the technology base,

enabling the application specialist and/or the software engineer to add/modify domain

object classes, add/modify generic components, and add/modify architectural fragments.

The visual system is addressed in more detail in (29).

3.-4 Related Research

Several other research efforts have addressed various aspects of the system we are

attempting to develop. This section summarizes this related work and analyzes the simi-

larities to and differences from our project.

34-.1 Hierarchical Software Systems With Reusable Components Don Batory and

Sean O'Malley are working to incorporate an engineering culture into software engineering.

The traditional engineering mindset dictates that new systems are created by fitting well-

tested, well-defined, and readily available building blocks into a well-understood blueprint

or architecture, which, if properly used, is guaranteed to produce the desired system. To

this end, they have developed a "domain-independent model of hierarchical software design

and construction that is based on interchangeable software components and large-scale

reuse" (4:2).

In Batory and O'Malley's view, each interchangeable component consists of an in-

terface (everything externally visible) and an implementation (everything else). Different

components with the same interface belong to a realm. All the components in a realm are

considered to be interchangeable or "plug-compatible" (4:3) because they have identical

interfaces. Symmetric components have at least one parameter from their own realm and

can be combined in "virtually arbitrary ways" (4:2) (also see Figure 3.4). Conceptually,

components are seen as layers or building blocks for an application; a system is seen as a
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stacking of components, i.e., a composition of components. Constraints on stacking com-

ponents (i.e., rules of composition) are derived from the compatibility of their interfaces.

Hierarchical software system design recognizes that constructing large software sys-

tems is a matter of addressing only two issues: which components should be used in a

construction and how those components are to be combined together (4:16). It employs

an open software architecture, which is limited only by the inherent ability of the compo-

nents to be combined, i.e., by their interfaces. Symmetric components have no inherent

composition restrictions; thus, composition rules are simplified while ensuring maximum

design flexibility and potential reusability of components.

Given the following plug-compatible components:

A[x:R], B[x:R], C[x:R]

Some of the valid compositions include:

A B C C

B A A B

A[B[C]] B[A[C]] C[A[B]] C[B[A]]

Figure 3.4. Combining Plug-Compatible Components

Batory and O'Malley use an interesting analogy, equating their concepts to a gram-

mar, as shown in Table 3.1 (4:5). Using this analogy, a domain is a language. Consider

the following example (4:5):
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S= {a, b, c} S-a I bI c

R = { g[x:S], h[x:S], i[y:R]} R -- gS I hS I iR

A realm S, having a set of components (a, b, and c), corresponds to a production where

the non-terminal S can be replaced by either a, b, or c. Whenever a component from realm

S is needed, a, b, or c could be used, depending on the behavior and level of detail needed.

A realm R, whose components g, h, and i require parameters from realms S, S, and R,

respectively, can be represented by a production where a non-terminal can be replaced by

both a terminal and a non-terminal. The non-terminals on the right-hand side are the

realms from which the parameters are provided. The complete analogy is summarized in

Table 3.1.

Concept Grammar

Parameterized Components Productions with non-terminals on right

Parameterless Components Productions that only reference terminals

Symmetric Components Recursive production

Component Interface Left side of a production

Implementation Right side of a production

Realm Set of all productions with the same head

Software System Sentence

Rules of Composition Semantic error checking

Table 3.1. Analogy to Grammar

Batory and O'Malley's work provides support for our research. It confirms the un-

derlying principle of an application generator: building software systems from reusable

components is "simply" a matter of selecting which compcnents to use and deciding how

to compose them together. It reinforces our intention to use an object-oriented approach

in designing our system. It also illustrates the role of component interfaces in system cc a-

position and demonstrates the importance of consistent interfaces and composition styles

in developing rules for combining components.
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On the other hand, the Batory/O'Malley work falls short, in some ways, of what we

are attempting. It does not incorporate a mechanism for an application s.ecialist to specify

new applications in domain-specific terms; this is a primary emphasis of our project. It also

does not seem to provide for tailoring of component composition to suit the application

being built; composing component A with component B into component C will always

produce the same behavior for C. We want to be more flexible in our compositions and

allow A and B to be composed into C in one situation and C' in a different situation,

depending on how the application specialist specifies the composition.

3.4.2 Automatic Programming Technologies for Avionics Software The Lockheed

Software Technology Center has developed the Automatic Programming Technologies for

Avionics Software (APTAS) system pictured in Figure 3.5 (16:2). The APTAS system,

built for the target tracking domain, "takes a tracking system specification input via user

interface with dynamic forms and a graphical editor, and synthesizes an executable tracker

design" (16:1). An application specialist defines a new tracking application by answering

questions which appear in pop-up, menu-like forms. His answers determine which addi-

tional questions are to be asked as he is guided through specifying a new tracker. When all

pertinent specifications have been entered (defaults exist for questions which are left unan-

swered), the application specialist generates a software architecture for the new tracker

via the architecture generator. A graphical user interface provides a "picture" of the ap-

plication architecture and allows the user to change it interactively. After the application

specialist is satisfied with the architecture just created, he generates executable code to

implement that architecture via the synthesis engine (16). He can also invoke a run-time

display which facilitates testing and analyzing the tracker just created.

The Tracking Taxonomy and Coding Design Knowledge Base is at the center of the

APTAS system. It contains the system's specification forms, the primitive modules from

which new trackers are constructed, and the composition rules which establish how prim-

itive modules are to be combined. The application specialist's answers to the questions

on the specification forms progressively reduce the number of primitive modules which

are candidates for incorporation into the new tracker. The architecture generated upon
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completion of the forms specification is synthesized into an executable intermediate lan-

guage, Common Intermediate Design Language (CIDL). The CIDL code can be executed

to demonstrate system behavior. If the system behaves as desired, the CIDL representa-

tion can then be transformed into Ada code. The use of an intermediate representation,

such as CIDL, localizes the code translation function and enables languages other than

Ada to be targeted more easily.

The APTAS primitive modules and their composition rules are also written in CIDL.

Extending the system involves writing new primitive modules and incorporating references

to these new modules into the appropriate composition rules and specification forms. This

is generally considered to be a software engineer's task (rather than an application spe-
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cialist's), as CIDL is a software specification language and few tools exist to simplify the

process.

APTAS is strikingly similar to the system we envision. It clearly demonstrates that

the concept of user-initiated composition and generation of domain-specific systems is

feasible. It allows application specialists to specify new applications in domain-specific

terms, by way of menu-like specification forms. It also provides a sophisticated graphical

user interface which can be used to construct and/or edit the tracker system, as well as to

view the structure of the architecture.

There are, however, some major differences between APTAS and the system we

are developing. APTAS's use of a domain-specific language is implicit and embodied in

its graphical user interface. Our domain-specific language, on the other hand, is explicit

and its grammar is usable in both textual and graphical modes. We believe this provides

advantages to both the software engineer and application specialist in terms of adaptability,

flexibility, and ease of use. In addition, APTAS currently lacks a set of convenient tools to

facilitate extending its knowledge base; such a toolset is an integral part of our system.

3.4.3 Model-Based Software Development The Software Engineering Institute's

(SEI) Software Architectures Engineering (SAE) Project has proposed a concept called

Model-Based Software Development (MBSD) (15). Like Batory and O'Malley, MBSD

strives to apply traditional engineering principles to software development by exploiting

prior experience to solve similar problems. This prior experience is codified in models,

"scalable units of reusable engineering experience" (15:11), which are stored in a tech-

nology base. In a mature engineering domain, the technology base will contain "all the

components an engineer needs to predictably solve a class of problems, and the tools and

methods needed to predictably fabricate a product from the components specified by the

engineer" (15:4). Under MBSD, software development follows the engineering paradigm:

reuse existing, mature models rather than starting from scratch for each new development.

This involves much more than code reuse; the requirements analysis, design, and software

architecture are reused each time the corresponding model is used.
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MBSD uses a technology base, a repository of models and composition rules that

share common engineering goals. Each model is mapped to a specification form and a

software template for the target application language. The specification form is a text-

based description which uniquely identifies a specific instance of a model. The software

template is code containing place holders, which are replaced with information from the

specification form (15:10).

As part of MBSD, the SEI uses the Object-Connection-Update (OCU) model as

a consistent pattern of design, a software architecture. This model is especially suited

to domains where the real world can be modeled as a collection of related systems and

subsystems (15:17). Partitioning a system into subsystems provides different levels of

abstraction, giving the flexibility to replace a subsystem with another that either provides

a different function or has a different level of detail. In the OCU model, subsystems consist

of a controller, a set of objects, an import area, and an export area as pictured in Figure 3.6
(15:18).

"Objects

Figure 3.6. OCU Subsystem Construction

1. Controller - Performs the mission of the subsystem by requesting operations from the
objects it connects. A controller is passive, triggered by a call to perform its mission,
and depends on the other subsystem components to accomplish that mission.
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2. Objects - Model behavior of real-world entities and maintain individual state infor-
mation. An object is passive, triggered by a call from the controller to which it is
connected.

3. Import Area - Makes data external to the subsystem available to the controller and
its objects.

4. Export Area - Makes data internal to the subsystem available to the other subsys-
tems.

Both controllers and objects have standard procedural interfaces used by external

controllers or application executives to invoke some action. Controllers have the following

procedures (15:19):

1. Update - Updates the OCU network based on state data in the import area and

furnishes new state data to the export area.

2. Stabilize - Puts the system in a state consistent with the current scenario.

3. Initialize - Loads the configuration, creates objects, and defines the OCU network.

4. Configure - Establishes the physical connection between import area and input data
as well as export area and the output data.

5. Destroy - Deallocates the subsystem.

All objects have procedures analogous to those for controllers, but operating on a single

object instance. Specifically, these procedures are (15:20):

1. Update - Calculates the new state based on input data and the current state.

2. Create - Creates a new instance of the object.

3. SetFunction - Changes or redefines the function used to calculate the state.

4. SetState - Directly changes the object's state.

5. Destroy - Deallocates the object.

These well-defined and consistent interfaces for controllers and objects facilitate and sim-

plify the application composition process.

MBSD provides some significant insights upon which to base our research effort. Its

focus on the reuse of validated, engineering experience is attractive and we have adopted

the notion of storing such information in a technology base. The OCU model provides a

realistic approach toward composing primitive objects into application-specific subsystems.
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3.4.4 Extensible Domain Models2 The Kestrel Interactive Development System

(KIDS) is a knowledge-based system that allows for the capture and development of do-

main knowledge (27). The representation of the domain knowledge constitutes a domain

model, and these domain models are called domain theories. Essentially, the domain the-

ory provides a formal language, natural to specialists in that domain, for specifying the

problem they want to solve. The KIDS system provides support for constructing, extend-

ing, and composing domain theories, and over 90 theories have been built up in the system

(27). Additionally, the set of domain theories developed during the domain modeling effort

serves as the basis for software synthesis.

The foundations of the KIDS approach emerged from years of research into the

specification and synthesis of programs (27). Concepts from algebra and mathematical

logic are used to model application domains and synthesize verifiably correct software.

Domain modeling entails the analysis of the domain into the basic types of objects, the

operations on them, and their properties and relationships. The domain model is then

expressed as a domain theory. Theories are useful for modeling application domains for

the following reasons.

1. The basic concepts, objects, activities, properties, and relationships of the domain
are captured by the types, operations, and axioms of a theory.

2. Any queries, responses, situation descriptions, hypothetical scenarios, etc. are ex-
pressed in the language defined by the domain theory.

3. The semantics of the application domain are captured by the axioms, inference rules,
and specialized inference procedures associated with the domain theory.

4. Simulation, query answering, analysis, verification of properties, and synthesis of
code are supported by inference within the domain theory.

5. Various operations on models such as abstraction, composition, and interconnection
are supported by well-known theory operations of parameterization, importation,
interpretation between theories, and others. Thus, a high degree of extensibility is
obtained.

2 This section was provided by Major Paul D. Bailor
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3.5 Specific System Concept

Several aspects of the system described in Section 3.3 depend heavily on the choice

of the models and tools used in the implementation. These selections may impact other

parts of the system. Figure 3.7 is a modification of the system overview, incorporating the

specific models and tools to be used. It represents Architect, the specific system which is

to be implemented during this research effort.

3.5.1 System Overview Figure 3.7 illustrates how specific tools and models further

define Architect. REFINE, as the domain modeling language, imposes its structure on the

domain model (which will be represented in REFINE also). Input, written in the domain-

specific and architecture grammars, is processed through a parser generated by DIALECT.

DIALECT requires two inputs to generate a parser: a DIALECT domain model (a subset

of the system domain model) and a grammar definition. The DIALECT parser creates

abstract syntax trees in the structured object base. The visualizer will be implemented

using INTERVISTA. The SEI's OCU model will serve as our software architecture model,

providing a structure around which to generate our applications. KIDS will serve as a

mechanism for realizing extensibility of the domain model and technology base.

3.5.2 Software Refinery Software Refinery is a formal-based specification and pro-

gramming environment developed by Kestrel Institute and available commercially from

Reasoning Systems, Inc. We have selected this environment in which to implement Archi-

tect for several reasons, but the main factor in our decision is REFINE's powerful, integrated

toolsets that allow rapid prototyping. This decision has many implications on how the sys-

tem will operate, as we will show.

3.5.2.1 Capabilities The REFINE environment consists of the following tools:

1. A programming language (REFINE) which includes set theory, logic, transformation

rules, pattern matching, and procedures (24:1-2). The REFINE language provides
a wide range of constructs from very high level to low level, making it suitable for

various programming styles, including use as an executable specification language.
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2. An object base which can be queried and modified through REFINE programs (24:1-
2). "Object classes, types, functions and grammars are among the objects you can
define and manipulate" (24:1-4) with several built-in and powerful object base ma-
nipulation tools.

3. A language definition facility (DIALECT) which allows design of languages using an
extended Backus Naur Form notation. REFINE supplies a lexical analyzer, parser,
pattern matcher, pattern constructor, and prettyprinter for the language (24:1-2).

4. A toolset (INTERVISTA) which is useful in creating a visual, window-based interactive
user interface.

3.5.2.2 Domain Modeling Language Some domain modeling languages al-

ready exist for expressing domain knowledge within a formalized domain model; we con-

sidered two such languages: the Requirements Modeling Language (RML) and REFINE.

RML was designed as a research tool as part of the Taxis Project at the University of

Toronto. It allows "direct and natural modeling of the world" (9:3) in an object-oriented

manner which "captures and formalizes information that is left informal or not documented

in current approaches" (9:1). RML can express "assertions (what should be true in the

world), as well as entities (the 'things' in the world) and actions (happenings that cause

change in the world)" (9:4). This is precisely the type of information we want to capture

in our domain model.

Even though both RML and REFINE appear to be capable of expressing the kind of

informatinii we require in the domain model, we chose REFINE as our domain modeling

language for the following reasons:

1. REFINE provides an integrated environment including programming constructs and
powerful object base manipulation tools. Use of REFINE'S existing tools eliminated
the need to write our own, allowing more time to be spent on the research itself.

2. RML is not an executable language; no compilers currently exist. To use RML, we
would be forced to develop a compiler, a considerable overhead to our project. As
REFINE is also capable of expressing the information we require, it is unclear what
added benefits RML could provide to justify this additional expense.

3. The REFINE environment includes compatible tools (DIALECT and INTERVISTA) use-

ful in other portions of the system.

4. REFINE is a commercially available and supported product.

5. Members of the research team already possessed a working knowledge of REFINE.
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3.5.2.3 Parser "DIALECT is a tool for manipulating formal languages" (23:1-

1). A part of the REFINE software development environment, DIALECT generates appropri-

ate lexical analyzers, parsers and pretty-printers for user-specified, context-free grammars.

Valid input is parsed and stored as abstract syntax trees in the REFINE object base, ac-

cording to the structure established in the DIALECT domain model. The DIALECT domain

model defines object classes, object attributes, and the structure of the instances in the

object base. DIALECT also supports grammar inheritance, allowing for a base language

with several variations or "dialects." In Architect, the architecture grammar acts as the

common base, and the domain-specific grammar specifies a particular variation. DIALECT

does impose restrictions on the grammars. Since DIALECT generates an LALR(1) parser,

the grammar must be consistent with this type of parser. Also, the productions in the

grammar must correspond to the structure defined in the domain model. Altering some

productions may require updating the DIALECT domain model.

3.5.2.4 Structured Object Base The structured object base was implemented

using the REFINE object base. REFINE includes many tools which, when combined with

REFINE code, provide all of the functions necessary to manipulate the structured object

base. However, the object base must be accessed through the REFINE environment.

3.5.2.5 Technology Base Models in the technology base were represented as

REFINE code and stored in REFINE's object base. Although separate conceptually, the

technology base and structured object base are not physically separate. Access is controlled

by Architect to avoid any confusion.

3.5.2.6 Visual System INTERVISTA provides a tool set with which to generate

a window-based graphical user interface. It is compatible with the other REFINE tools;

therefore, it is easily integrated. INTERVISTA can access the REFINE object base, so all its

required data is readily available.

3.5.3 Object-Connection-Update Model We have selected the Software Engineering

Institute's Object-Connection-Update (OCU) model for our software architecture model.

As such, it provides a framework for composing applications - a standardized pattern of
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design for all applications and their components. The OCU model's consistent interfaces

enable all components to be accessed in the same manner and its intercomponent commu-

nication scheme ensures that each component can readily access the external data needed

for its processing. Currently, our focus is on implementing the subsystem aspect of the

OCU model; the hardware interface portion of the model will be addressed in follow-on

research efforts.

The choice of the OCU model for our software architecture model had certain impli-

cations for Architect.

1. Terminology - In keeping with the OCU model, we will refer to domain primitive
objects as "objects," compositions of objects as "subsystems," the locus of control
of a subsystem as a "controller," and the overall application itself as an "executive"
(see (1) for a more detailed discussion of the executive). External data needed by an
object are "input-data," whereas data to be made externally available are "output-
data." An "import area" serves as a focal point for all external data needed by the
subsystem and an "export area" is the focal point for all internal data to be made
available to other subsystems. The OCU model's names for the object and controller
procedural interfaces have also been retained.

2. Use of a Technology Base - Although the concept of storing reusable domain knowl-
edge or models in a technology base is not unique to the OCU model, it is a funda-
mental component of Model-Based Software Development of which the OCU model
is a part.

3. Domain Analysis - The OCU model deals with objects and subsystems. This imposes
a constraint on the domain engineer and will impact the manner in which domain
analysis is conducted. Under the OCU model, the domain engineer must model the
domain in terms of subsystems which can be composed from lower-level, more prim-
itive objects. Many domains can be naturally modeled in such a way; with other
domains, a new mindset may be needed to incorporate the subsystem/object require-
ments of the OCU model. Alternatively, an additional class of software architectures
may need to be defined.

4. Definition of Domain Objects - The OCU model requires that all objects be defined
in the same manner. Each object has state data, other descriptive information,
input-data/output-data definitions, and the following procedural interfaces: Update,
Create, SetFunction, SetState, and Destroy. These requirements dictate how the
objects will be constructed, severely limiting implementation choices. However, it is
this very limitation which provides the flexibility that allows the domain objects to
be successfully composed to satisfy the application specialist's specification.

5. Definition of Architectural Fragments - The OCU model requires that all architec-
tural fragments (subsystems) be described in the same way. All subsystems have
an import area, export area, controller, and objects. Each controller has the follow-
ing procedural interfaces: Update, Stabilize, Initialize, Configure, and Destroy. As
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with the objects, this apparent limitation on implementation choices actually pro-
vides great flexibility in composing subsystems and combining them into a complete
application.

6. Composition Rules - The standardized object/subsystem definitions and interfaces of
the OCU model simplify application composition. There are no inherent restrictions
preventing one component from being combined with another; all composition rules
are domain-specific and do not derive from the software architecture.

7. Intercomponent Communication - The OCU model establishes and enforces a stan-
dard method for intercomponent communication. Communication external to the
subsystem is localized in the import area which obtains the necessary input-data
for all objects within the subsystem. This localization of communication concerns
within the narrow guidelines imposed by this scheme simplifies intermodule commu-
nication: subsystems can readily obtain needed external information in a consistent
manner and changes in the low-level implementation of the communication process
are hidden from the subsystems/objects.

8. Structure of the Resulting Application Specification - Obviously, the specification
produced by the application composer is impacted by the choice of a software ar-
chitecture model. The OCU model produces an application (an "executive") which
is composed of subsystems. These subsystems can be decomposed into objects and
lower-level subsystems, if appropriate. This hierarchical structure is preserved in the
generated specification.

The OCU model is the result of years of research and experimentation by the SEI.

It has been used successfully in the flight simulator, missile, and engineering simulator

domains (5) and appears to provide a suitable structure for composing applications within

our application composition system.

3.6 Conclusion

Software engineering may be on the brink of a new era, an era in which software

engineers develop knowledge about generating software systems and application specialists

actually create the software systems using familiar, domain-oriented terms. Our research,

which builds on important work already accomplished by various researchers, is designed

to demonstrate the feasibility of such an application composer.
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IV. System, Design

This chapter describes the design for populating and manipulating the structured

object base as described in Chapter III, using the Software Refinery Environment. It

begins with a high-level description of the design of the overall system and is fllowed by

a detailed explanation of the areas related to this thesis.

4.1 System Design Overview'

4.1.1 Design Goals Throughout the design process, an attempt was made to opti-

mize several fundamental goals. These goals include:

4.1.1.1 Domain Independence Since Architect must be applicable to any do-

main, it should not directly incorporate (i.e., "hardcode") knowledge about a specific

domain or type of domain; the technology base is the proper, sole repository for such

domain-specific information. If any domain knowledge were to be included in Architect,

code changes would likely be required before it could be used with a new or modified

domain. Obviously, this greatly limits the applicability and usability of the system.

4.1.1.2 Extensibility It would be very naive to assume that an initial domain

znalysis will reveal all possible knowledge about a particular domain and that the domain

model, which formalizes this knowledge, will never change. In reality, the domain model

will continue to evolve as existing knowledge is further refined and/or new domain infor-

mation is added to the system. If this evolution cannot be achieved easily, Architect will

quickly become obsolete.

4.1.1.3 Flexibility Because the concept of application composers is rather

new, we do not yet know how application specialists and software engineers will best be

able to use them. Architect, therefore, must be flexible enough to allow multiple methods

for performing various tasks and a wide range of application specification options.

'This Section was co-written with Capt Cynthia Anderson and also appears in AFIT Technical Report
AFIT/EN/TR-92-5 and (1).
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4.1.1.4 Usability Application specialists, the primary users of this system,

must have some degree of software programming knowledge, but they can not be expected

to have the same degree of understanding as a software engineer. Therefore, it is important

that the system not require detailed programming knowledge from its users. In many cases,

the goals of usability and flexibility conflicted, so a balance had to be found.

4.1.2 Concept of Operations The steps which are followed when using this appli-

cation generator are depicted in Figure 4.1 as labels on the flow arrows. The application

specialist must first identify all objects to be used in the application specification and

enter (parse) them into the structured object base using the domain-specific and archi-

tecture grammars. Some of these objects may require further information before they are

fully defined (e.g., previously saved objects must be located and loaded, "holes" in generic

object templates must be filled, etc.); the application specialist provides this additional

information by completing the application definition. Although the application definition

may be considered complete from the user's point of view, some data needed by the system

may not yet be directly available; preprocessing the application specification automatically

generates this essential information. When the application is fully defined, semantic checks

are performed to identify any composition errors, which must be corrected before the ap-

plication's behavior can be simulated. At any time, the application specification can be

changed (edited), usually in response to a semantic error or to include additional data. If

no semantic errors exist and no additions/changes have been made, the application's be-

havior can be simulated (executed). If the application behaves as the application specialist

intends, he may generate a formal specification for the composed application which will be

used by an automatic code generator to produce a fully realized application. At any point

in this process, the application specialist may save selected components of the application

definition (or the entire definition, if desired) to the technology base where they will be

available for future use.

4.1.3 Software System Design The eight steps outlined above correspond directly

to Architect's eight top-level modules as shown in Figure 4.2. The highest level module,

the visual system, will eventually control each of the other modules as well as all user in-
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Figure 4.1. System Operations

teractions through a graphical interface. However, the basic system was developed before

the visual system was completed; therefore, a simple user interface, which is easily re-

placed, was implemented. In the system design, we have made a conscious decision to keep

application specification a domain-oriented, rather than programming-oriented, process.

The system is designed to use all available domain knowledge to insulate the application

specialist, as much as possible, from programming details, conventions, and jargon.

Each of Architect's major functions is encapsulated into one of the system's top-level

modules. These modules are further discussed in the remainder of this section.

4.1.3.1 Parse Using REFINE, data can be input into the object base using

ore of two different methods: through a grammar or directly by using built-in REFINE

functions.

Using the DIALECT tool allows the application specialist to reuse his input files

as templates for other application definitions. The grammar also provides a consistent
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format for saving objects from the object base to the technology base. The domain-specific

portions of the grammar can be separated from the architectural components. DIALECT

allows grammars to inherit the productions of another grammar. In this case, each domain-

specific grammar inherits the same architecture grammar. If the domain is changed, only

one grammar is affected. However, the application specialist must conform to the structure

imposed by the grammars. If the current domain changes, the domain-specific grammar

will require appropriate, corresponding changes. If a different domain is to be used, a new

domain-specific grammar must be written; however, grammars for other domains can serve

as a guide to facilitate creating new grammars.

An alternative approach is to build REFINE tools that allow the application specialist

to interactively enter the objects into the object base. This method migrates most easily

to the visual interface planned for a follow-on project (29). Also, this method is domain-

independent. However, additional code must be written to save portions of the object
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base. The developer must devise a standard format for the files to allow this data to be

read back into the object base.

We chose to combine the two methods. The application specialist can input objects

into the object base either through a grammar or interactively. The grammar provides

a format for saving and retrieving all objects in the object base and a means of saving

"templates" for application definitions. The interactive portions extend more readily to

the visual system.

4.1.3.2 Complete Application Definition After all of the application special-

ist's input is parsed into the object base, additional processing is needed to complete the

definition. The application specialist can fully define an object in the grammar or he can

give partial information in one of three forms: a generic instance, an incomplete object,

or an object to load. As part of completing the application definition, the system must

actually instantiate the generic objects, complete incomplete objects by prompting the ap-

plication specialist for values for each attribute, and physically load objects into the object

base.

4.1.3.3 Preprocess Application The structured object base now contains only

"complete", fully-instantiated application components. However, some critical data has

not been specified. For example, the contents of a subsystem's import and export areas

have not yet been identified. These areas are dependent upon the inputs and outputs,

respectively, of the primitive objects which are controlled by that subsystem. Appropriate

input-data and output-data for each primitive object have been identified during domain

analysis and are available to the system in the technology base. Using this knowledge,

the preprocessing module dynamically builds each subsystem's import and export areas,

prompting the application specialist to indicate where the import data will be obtained

when more than one subsystem produces the desired information.

4.1.3.-4 Perform Semantic Checks Two levels of semantic checks exist in Ar-

chitect. Architecture-oriented semantic checks ensure that the proposed application spec-

ification conforms to the composition requirements of the OCU model and that its behav-
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ior can be successfully simulated (e.g., all components exist in the object base, applica-

tion/subsystem update procedures directly reference only components which are part of

the same application/subsystem, data input to one subsystem is produced as output by

some subsystem in the application, etc.). Domain-specific semantic checks are knowledge-

based, building on what is known about the domain, its objects, and previous applications

created in that domain, to assist the application specialist in composing a meaningful and

optimized application.

Meaningful architecture semantic checks can be performed on the application as a

whole and also on its constituent subsystems. There are currently no meaningful semantic

checks for primitive objects; the system assumes that primitive object class definitions and

update procedures have been correctly constructed by a software engineer.

4.1.3.5 Edit Application If the application specialist decides an object in-

stance is not exactly what was intended, he can edit the object. He can edit existing

instances, add new objects, or delete objects. If the application specialist modifies the

object base, he must also perform preprocessing and semantic checking on the entire ob-

ject base to ensure the integrity of the data before simulating behavior or generating the

specification.

The goal of domain independence has a large impact on how this module is designed.

If certain domain knowledge is embedded in the source code, the code must be modified

when the domain changes. If the code is completely independent, the interface may be

more difficult to build and less user-friendly (the system can not give detailed prompts

explaining what type of data is expected). In this case, domain independence is more

important than friendly prompts.

4.1.3.6 Execute Application After the structured object base is fully popu-

lated and the semantic checks have uncovered no errors, the application's behavior can

be simulated. This enables the application specialist to ascertain if the application, as

specified, behaves as expected/desired. Behavior simulation is achieved by executing the

application's update procedure, which consists of a series of calls to subordinate sub-
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systems to execute their missions. Calling a subsystem to execute its mission invokes its

update procedure. Subsystem update procedures consist of calls to subordinate subsys-

tems/primitive objects, as well as if and while statements which allow conditional and

iterative flows of control.

4.1.3.7 Save to Technology Base Since saved objects can be retrieved and

parsed back into the object base, a function must exist to store objects in the object base

into a file. The objects must be stored in the same format required by the input; that

is, the format must adhere to the specifications of the domain-specific and architecture

grammars. Saved application definitions can later be retrieved and loaded into the object

base. Objects can be retrieved either through the grammar or through the interactive

interface.

4.1.3.8 Generate Specification When the application specialist is satisfied

that the application he specified behaves as desired, he can generate its formal specifi-

cation. The formal specification provides all the information necessary to directly code the

application into an efficient production system. Indeed, the formal specification generated

by this application composer is intended to be input to an automated code generation

facility.

4.2 Detailed Design

The previous sections described the overall design for our research. The details of

the design pertinent to this specific thesis now follow.

4-.3 Parse

.3.1 Methods of Populating the Object Base REFINE users have two options to

enter input into the object base: using a grammar or entering the data interactively.

These two metb .,ds correspond to the two ways of populating the structured object base

for Architect.
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4.3.1.1 Grammar The DIALECT tool allows developers to produce domain-

specific languages based on a DIALECT domain model. This domain model determines

the structure of the abstract syntax trees by defining a hierarchy of object classes and

their attributes. This information is also part of a system domain model because it de-

scribes the basic structure of domain-specific objects. Not all of the input is specific to

a domain; parts will depend on the architecture model, which only changes when the

architecture model changes. Therefore, two separate grammars can be used: one to de-

scribe the domain-specific objects, another to describe the architecture model objects. The

domain-specific grammar requires changes when the domain changes, but the architecture

grammar only requires changes when the architecture model changes. DIALECT supports

grammar inheritance so each domain-specific grammar can inherit all of the productions of

the architecture grammar. When defining a new domain, the software engineer generates

a new DSL that inherits the architecture grammar.

Using a grammar, the application specialist can store the input for an application

and only has to re-parse the file to populate the object base for that application. He can

also use a previous application as a framework for a new one by modifying the file. In this

case, applications do not have to be saved explicitly by the system; all the information is

captured in the input file. There are disadvantages to this method. The major drawback

is the fact that portions of the grammar are domain-specific and require changes when

the domain changes. A grammar also imposes a structure on the application specialist;

attribute values for each object class must be given in a specific order and each sentence

must exactly follow the pattern dictated by the grammar. Using only a grammar to

manipulate the object base, the application specialist cannot make simple changes to the

object base; instead, he must correct the input file and re-parse it into the object base,

unless additional functions are written for the system.

A visual system can provide a graphical, interactive interface which will solve some

of the problems associated with having a highly structured input. If the visual system can

be built using the grammar, the only real disadvantage to using a grammar is the fact

that it must be changed whenever the domain changes. This cannot be avoided since the

system must be domain-specific. One of the major challenges is building a visual system
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that can use this grammar. The visual system uses a different type of interface to enter

information than that required when parsing input through a grammar. It must be able

to use the domain information embedded in the grammars and domain model so that the

visual system itself remains a domain-independent implementation.

4.3.1.2 Interactive Input Adding objects interactively allows easy migration

to a visual system since it provides an interactive interface. With this type of interface,

the application specialist can be prompted for the values of each attribute when creating

an object rather than trying to remember a structured format required by a grammar.

Implemented correctly, the same code can be used for all domains because the code will

be independent of the domain. The user only needs to specify what type of object to build

and Architect can figure out the attributes needed and their data types. Changing to a

new domain is simple; it only requires changing the domain model. However, there are

disadvantages to using this method. It assumes that values for all attributes will be entered

by the application specialist; i.e., there are no "internal" attributes that the application

specialist should not modify. If this is not the case, Architect needs some method to

determine which attributes are internal to the system and which must be entered by the

application specialist. This could be done by storing a list of attributes that must be

entered by the application specialist in the domain model.

Another disadvantage is with storing information in the object base. The format for

each object type is defined by the object class of which it is an instance, but Architect

has no overall format for storing aggregations of objects. A grammar already requires this

structured format. Therefore, if a grammar is not used, an additional capability, including

a format for the data, is needed to save and retrieve information that has been entered

interactively. The application specialist can only save specific instances from the object

base and cannot save templates for an entire application without adding another format

specification.

4.3.1.3 Combination Each of the two methods has limitations that can be

overcome by the other. By combining the two techniques the benefits of each can be

realized. Portions of the input can be stored in a file and parsed into the object base
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while the rest can be entered interactively. This method takes advantage of the benefits

of each technique. The application specialist can save "patterns" for applications. He can

either modify the file and parse in a new application or he can use incomplete definitions

and give the additional data needed interactively. Either way, the same template file can

be used for different applications. Also, objects and entire application definitions can be

saved using the format determined by the grammars.

4.3.2 Creating Objects Regardless of whether the application specialist inputs the

data in a file and parses it into the object base or enters it interactively, the user has several

basic options when building objects in the object base:

1. Add a new primitive object instance (see Section 4.3.2.1)

2. Instantiate a generic primitive object (see Section 4.3.2.2)

3. Load an existing object from the technology base into the object base (see Sec-
tion 4.3.2.3)

4. Add a new subsystem (see Section 4.3.2.1)

5. Instantiate a generic subsystem (see Section 4.3.2.2)

6. Load an existing subsystem from the technology base into the object base (see Sec-
tion 4.3.2.3)

7. Parse an application from the technology base into the object base (see Section 4.3.2.4)

8. Build a new subsystem with assistance (using a predetermined pattern of control)
(see Section 4.3.2.5)

4.3.2.1 Adding New Instances Architect allows the user to add new instances

of primitive objects and subsystems using one of three methods:

1. Completely describe the instance through the grammar. If the user knows all the
attributes values, he can specify them in the input file, and the parser will build an
instance of the object with the given attribute values in the object base.

2. Indicate the type of object to be built in the grammar and add specific values inter-
actively. The application specialist gives the object class name and the name for the
specific instance. For example, if he is building a subsystem, but either doesn't know
all of the details yet or doesn't want to include them in the file, he enters "object
subsystem-obj, subsystem-name" where subsystem-obj is the name of the object class
and subsystem-name is the name of the instance of the new subsystem. When the
system completes the application definition, it will find all these partial definitions,
build the corresponding object, and prompt for attribute values. The final result will
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be a new object instance in the object base identical to objects parsed completely
through the grammar.

3. Enter the object interactively. This allows the application specialist to enter an object
after all of the input has been parsed. Architect will prompt for the object type and
all the appropriate attributes, and create a new object instance in the application
definition.

4.3.2.2 Instantiating Generic Objects Instantiating generic primitive objects

and generic subsystems is done identically; Architect does not use any specific information

about the object classes to instantiate a generic object. In fact, it cannot, because the

code must be as independent of the domain as possible. The application specialist builds a

generic instance that references a generic object and lists all the parameters. This generic

instance is then instantiated as described in section 4.4.1

Generic instances entered through the grammar cannot be checked for the correct

number and type of parameters while being parsed. The only way for the grammar to

check the parameters is to build a different production for each generic object. Obviously,

this makes it difficult for the software engineer to add or modify a generic since he not only

has to build or edit the generic, he must modify the grammar and the DIALECT domain

model as well. Since the generic object stores the types of the generic parameters, if the

generic is instantiated interactively, the system can check that the user enters the correct

number and type of parameters. This provides a more "user-friendly" method of entering

generic instances. If a generic instance is entered incorrectly through the grammar, the

system will give the application specialist the opportunity to edit the object.

An alternative approach is to store the generics as functions whose parameters are

the generic parameters. The function builds the subsystem object based on the parameters

and the "pattern" built into the function. With this method, it is more difficult to add

new generics.

4.3.2.3 Loading Instances into the Object Base It is possible that specific in-

stances of primitive objects or subsystems may be suitable for several applications. Rather

than recreating these instances each time, they can be saved and later retrieved and reused.

The purpose of loading existing domain primitive objects or subsystems is to parse one of
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these instances into the object base for the current application. From the application spe-

cialist's view, these instances are a special case of generic primitive objects or subsystems

that have no parameters. The major difference is that the exact copy of what is stored is

parsed into the object base; none of the attributes change, including the name of the object.

All of the domain-specific object classes and subsystems require unique names; therefore,

at most one copy of each saved instance can be in the object base at any given time. If

the instance needs to be used multiple times in a single application, it must be converted

to a generic object by the software engineer. Objects can be loaded either through the

grammars or interactively after the initial application definition has been loaded.

4.3.2.4 Loading Application Definitions into the Object Base Since entire ap-

plication definitions can be saved, the application specialist must be able to retrieve these

definitions from the technology base. When parsing an application into the object base,

the application specialist specifies the name of the application (which corresponds to the

name of the file) and Architect will parse all the objects associated with that application

into the object base. If an application definition already exists in the object base, Architect

will warn the application specialist that there may be problems. If the two application

definitions use common objects, only one copy of that object instance will exist in the

object base and will be shared by both application definitions. Since two different appli-

cation definitions are controlling a single object, the object may enter an unexpected (and

undesired) state from the perspective of at least one of the application definitions. Archi-

tect cannot detect this problem before the new application is parsed; it cannot "look" into

the fie on disk to see which objects the new application uses. Architect does not "know"

which objects the new application uses until the file is parsed into the object base, but

then it is too late to recognize a problem; one of the duplicate objects will have already

been overwritten.

4.3.2.5 Building Subsystems from Patterns of Control Finally, different classes

of subsystems may follow a pattern of control common to its subsystems. The capability to

build subsystems with assistance allows the application specialist to create a new subsys-

tem following some predetermined configuration. The system can make simple suggestions
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or offer several alternatives to help build the subsystem. Ideally, the knowledge to build

these subsystems would be encoded in a knowledge base and used whenever appropriate.

However, this type of expert-system is outside the scope of this thesis.

4.3.2.6 User Interface Since the interface will eventually become visual, we

used REFINE rules, rather than a menu, to keep the implementation simple and easy to

extend. Every option that is applicable at any given time will appear when the application

specialist performs a rule search. He can then apply whichever rule corresponds to the

action he wishes to take. Flags will be used to prevent the user from being able to apply

rules in an inappropriate sequence.

4.3.2.7 Top-Level Object A high-level object will connect all the objects for

an application into a single REFINE abstract syntax tree. The user will give the name,

corresponding to the name of the application definition, for this object. This will allow

the application specialist to manipulate several different application definitions. This also

allows for all the objects comprising an application definition to be grouped so they can

be saved as a group. This is not same as the application object described in Section 4.7.

4.4 Complete Application Definition

After all of the application specialist's input is parsed into the object base, additional

processing may be needed to complete the definition. Generics must be instantiated to

create specific object instances, incomplete objects must be completed, and objects must

be physically loaded into the object base.

4.4.1 Instantiate Generic Objects Each generic specification has three parts: an

object instance (i.e., a subsystem or a domain-specific primitive object), a list of generic

parameters or placeholders (including an id and a type), and list of internal objects, as

shown in Figure 4.3. To instantiate a generic instance, Architect first checks that the

instance is valid, i.e., it must reference an existing generic object and it must have the cor-

rect number of parameters of the correct type. If this generic instance is valid, the system

makes a copy of the component object, then goes through the list of generic parameters,
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Generic Object

Name: Generic-Name Generic Parameters

Object Insn Placeholder-IDs Placeholder-Types Obj-Lst

Dummy-syml Dummy-syml Symbol Objl
-99 -99 Integer
"hold-string" Obj2

Dummy-sym2 "hold-string" String

Dummy-syml Obj3
Dummy-sym2 Symbol

Generic Instance

Generic-To-Be-Used : Generic-Name
Generic-Parameters : symbol, 25, "abc", symbol2

New Object Instance

symboll Objl
25
"abc" 0 bj2

symbol2

symbollOj

Figure 4.3. Generic Instantiation

finds the applicable placeholder in the new object instance, and replaces each instance

of the placeholder value with the new value from the parameter list. If the generic uses

internal objects (listed in obj-list), they are parsed into the object base and assigned to the

current application definition. The result is a new object in the application definition with

the name specified by the application specialist. If the generic instantiation is not valid,

Architect will allow the application specialist to edit the object to fix any problems. If the

application specialist decides to abandon this generic instantiation, the system will erase

the object completely and take no other action. If he does successfully edit the object, it

will be instantiated as described above.
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4.4.2 Complete Incomplete Definitions The application specialist has the option to

incompletely specify an object instance when inputing through a grammar. This allows

templates to be saved with only the object type and name specified; specific data for each

object instance can be tailored based on the application being specified. After the input

is parsed into the object base, all the incomplete object definitions must be completed.

Architect checks that the incomplete definition is valid; that is, the incomplete object

must have a unique name and it must specify a valid object class. If these conditions

hold, Architect creates a new object of the specified type and prompts the application

specialist for all required data for the object instance. This new object becomes part of

the application and the original incomplete object is erased. As with the generic instances,

if the incomplete object is not valid, the application specialist is given the option to edit

the object. He can either fix the problem or erase the object.

4.4.3 Load Object Instances The application specialist may require existing object

instances stored in the technology base. AF part of completing the application definitions,

the object instances requested in the application specialist's input file must be copied

from the technology base into the object base and assigned to the appropriate application

definition object. These instances will be stored in separate files that must be parsed

into the REFINE object base. These objects will be stored in a format determined by the

appropriate architecture and domain-specific grammars so that they can easily be parsed

back into the object base using the REFINE parse-file function. Again, if the load object

contains an error, the application specialist can edit or erase the object.

4.5 Edit Object Base

The application specialist can modify or delete specific object instances in the object

base. If this capability is not available, he would be required to make the changes to

his input ilMe (provided at least part of the input was parsed through a file), re-parse

the file, and interactively make the same changes as before, except for the object(s) to be

modified. Also, Architect must allow for additional object instances to be added or objects

to be removed from the object base. Since these changes may effect the integrity of the
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application definition, preprocessing and semantic checks must be reaccomplished before

simulating execution or generating a specification.

Aside from the objects used to implement the Object Connection Update (OCU)

model, the objects are domain-dependent. Architect cannot contain any information about

specific domain primitive objects except what it can derive from the domain model. As

a result, editing an object might not be straightforward from the application specialist's

perspective. Architect cannot provide useful prompts beyond the attribute name and the

type of data required. If the attribute name is descriptive of the type of data required,

the lack of prompts will not be a problem for the application specialist. Also, if any of the

attributes are not to be visible to the application specialist, they will still show up when

an object of that class is edited. In the case of subsystems, the system can be programmed

to ignore these attributes.

4.6 Save To Technu!ogy Base

Objects in the object base can be stored in files for later use. The objects are stored

in the format determined by the domain-specific and architecture grammars. This can be

done rather easily in REFINE; objects can be printed according to a specific grammar that

defines their structure. Objects can simply be printed to a file and later parsed into the

object base. If an entire application is to be saved, Architect will enumerate through all

of the components and write each object to a file. The file name will be the object or

application definition name.

4.7 Object Hierarchy

Figure 4.4 illustrates the hierarchy of objects used to implement this system. All

these objects define the architecture model's structure, except Primitive-Obj, which is

the superclass for all domain primitive objects. The top-level object, World-Obj, ties

together all of the types of objects in Architect. The second-level describes different,

unrelated, types of object classes within the system. The Import-Oh j, Export-Obj, and

Statement-Obj classes are used to describe subsystems and the Generic-Obj class is for

generic objects. The Spec-Parts-Obj class contains all of the objects that can be parsed
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Wodd-ObJ

Import- Export-ObJ Statement-Obj Gene c-0bJ Narne-Value-Obj

{I I•o I•p.o Ior

ISpec-ObJ Spec-Part-Obj Source-Otj

Import-Obj Expofi-Obj

Call-Obj If-Stmt-Obj WhIle-Stmt-Obj

- Update-al-ObI I

- Create-Oall-ObJ Incomplete-O(i Generic-Inst Component-Ob Load-ObN

- Set-Functlon-Call-Obj

SetState..Call-OJ Appllcation-Obj Subsystem-Obj Prim tive-Obj

Deetroy-CaiI-Obj

- InitIalize-Call-Obj

- Stabllize-Cal-Obj

SConfigure.-Cal-ObjFigure 4.4. Object Hierarchy

through the grammar, including: incomplete objects, generic instance objects, load objects,

and component objects. The component objects are either subsystems, application objects,

or domain primitive objects; the objects that will ultimately comprise the application

definition. Each application definition must contain one and only one application object.

This object is similar to a subsystem in structure and behavior, but it describes the top

level functions of the application and acts as the starting point for simulating the execution.

4.8 Data Organization

4.8.1 Technology Base

4.8.1.1 Object Definitions The information about each object class is stored

in a single file. This allows easier insertion of new object classes into the domain model

because it encapsulates all of the knowledge about an object class in one place. Each file

is required to contain very specific information in a specific format so the code can be
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independent of the domain model. The code simply generates the variable name based on

the operation ittis trying to perform and the type of object it is manipulating and retrieves

the value from the domain model. The software engineer is responsible for creating these

files. (For more information on these files see Appendix A.)

An alternative organization would be to combine all of the same type of data in a

single file. For example, all the attributes would be in a single file, inputs and outputs

would be in another file. If the goals of the system were different, this alternative would

be more attractive. It could allow the user (probably a software engineer) to build new

primitive objects by selecting the components needed to build the new object. When the

technology base extender is fully developed, this design may be more effective.

4.8.1.2 Object Instances, Applications, and Generics The software engineer

will store object instances, application definitions, and generics in separate files that will

be parsed into the object base when they are required. Like the specific instances, they

will use the current domain-specific grammar. The file name will be the same as the name

of the object being saved with the appropriate suffix.

4.8.2 File Organization

4.8.2.1 Storing the Technology Base The files that comprise the technology

base are stored in a subdirectory such as "tech-base." The software engineer can set up a

directory structure to store different domains in different directories. The actual name of

the subdirectory is not important; the only time it is used is when loading the files.

4.8.2.2 Storing Other Files The OCU model does not describe any catego-

rization for subsystems. This means that the only lines upon which to organize subsystems

are domain-specific. Since Architect itself must be domain independent, no specific scheme

can be built in. None of the other data stored in the technology base have a domain-

independent classification either except for the type of data they represent (i.e., a generic

object, object, or application definition). We can provide some "tools" that allow the soft-

ware engineer and application specialist to determine categories of subsystems. Copies of
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saved instances and generics can be classified and stored in different subdirectories. This

requires a common directory for each specific object type; e.g., all generic objects must

have a common root. This is set up by the software engineer by specifying a path name.

These path names can be any legal path name, either absolute or relative to the current

directory. It will be the responsibility of the software engineer to ensure that the corre-

sponding directories actually exist. Architect stores the paths of these root directories and

will use these variables when accessing the files. The application specialist can indicate the

category and the name of the object to be saved or retrieved by specifying a subdirectory.

4.9 Unique Names

If multiple instances with the same name were allowed in the object base, Architect

would not be able to determine which instance to update. Therefore, the object instances'

names must be unique. REFINE includes a unique-names-class function that ensures

all objects within that class axe unique. We require all objects to have unique names; a

subsystem cannot have the same name as one of the domain primitive objects. Otherwise,

whenever the system accesses an object, it must know its specific class. In REFINE, the

unique names function does not include subclasses.

4.10 Summary

This chapter outlined the design goals and the specific design decisions made for this

research to meet the requirements defined in Chapter III. The overall system design was

first discussed and was followed by the particulars of this effort. The steps required to

first populate a domain-specific formal object base were described as were the methods of

modifying the object base.
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V. Validating Domain

During initial development, we used a simple, artificial domain to prevent us from

being influenced by any biases that a more realistic domain may include. Before devel-

opment was completed, we moved to a more realistic domain to validate our work. This

chapter explains this validating domain and what was learned during its implementation.

5.1 Description of Domain

The domain we chose was digital circuits. It is a well understood, clearly defined field

and the expected results of simulating the execution can be easily determined to verify the

behavior of Architect. In this domain, simple gates and other low-level components are the

primitive objects. Combinations of these components can be built to simulate high-level

components. The application definition itself simulates an integrated circuit.

5.1.1 Primitive Objects The domain contains many potential primitive objects. We

selected to model those objects which would create a good test domain for our system.

Limited domain analysis was performed to develop a domain model because the main goal

was to create a domain to exercise the capabilities and to uncover potential problems with

Architect, not to build a complete model of the domain.

The primitive objects that comprise the initial digital circuits domain are:

"* And gate

"• Or gate

"* Nand gate

"* Nor gate

"* Not gate

"* JK flip flop

"* Counter

"* Switch

" LED
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All of the gates are modeled as having two inputs, even though other configurations

are possible. The switch and LED are used for initial input and output, respectively. The

counter was added to exercise the use of coefficients, with the coefficient representing the

counter's range.

Just as with the world of digital logic, using only very low level components makes

composition of circuits difficult and tedious. Our initial application definitions tended to

be long, just to create a relatively simple circuit. Adding additional primitives allows

specifications to be written more easily and more clearly. We decided to include the

following additional primitives that model real-world digital components:

9 Half Adder

* 3 x 8 Decoder

9 4 x 1 Multiplexer

These additional primitive objects allowed for more complicated test cases, such as

a 2 x 2 binary array multiplier, Binary-Coded Decimal (BCD) adder, and a Read-Only

Memory (ROM). Before adding these new primitive objects, we had built a half adder and

3 x 8 decoder using the original primitive objects. Having these new primitive objects

allows for comparison between functionality as well as ability to create more complicated

application definitions.

5.1.2 Creating a DIALECT Domain Model All of the primitive objects in this system

follow a similar template to that of Figure A.1 in Appendix A. The DIALECT domain model

for this domain was implemented following this format. Once all of the information was

identified, creating the files was straightforward. The final DIALECT domain model is

showed in Appendix C.

5.1.3 Update Functions The update functions of each primitive object simulate the

behavior of its corresponding hardware component. Since Architect is capable of having

multiple update algorithms for each primitive object, at least one primitive needed to

have two or more update functions to demonstrate this capability. The LED has a second

update function to display the output differently.
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5.1.4 Inputs and Outputs Once the primitive objects were selected, the input and

output data of each were determined. Both the inputs and outputs were directly de-

termined from the hardware counterpart of the object being modeled. In this case, the

category and type of data input and output from each is the same respectively: a signal

category and boolean type. The names of the inputs and outputs follow common digital

logic symbology as much as possible.

5.1.5 Creating a Domain-Specific Grammar The domain-specific grammar followed

from the DIALECT domain model and some additional knowledge about the domain. The

general format of each production were the same, with the differences being special at-

tributes, such as boolean-valued attributes, and optional attributes The lessons learned

from developing this grammar are documented in Appendix A as recommendations and

direction for the software engineer. The grammar developed for this domain is listed in

Appendix C.

5.2 System Changes

In the process of transitioning to a new, more realistic domain, we discovered some

changes that needed to be made to Architect. Some of the changes were uncovered because

of additional experience with the system, not just because of the new domain itself.

5.2.1 Import Sources The area of the most significant changes involved the import

areas. The definition of how the sources of the import objects were derived came under close

scrutiny. This occurred because the original artificial domain included several possibilities

for import sources, but the new domain required all of the data passed between objects to

be the same type, the worst case scenario. Since the system could not narrow the possible

sources of an import object, all possible interconnections were valid.

Defining these interconnections can, at times, be very tedious. Once this is done,

the application specialist will not want to repeat this step unless necessary. However, if he

saved his work to a file and later retrieved it, these interconnections would have been lost.

The grammar was modified so that the interconnections are also saved.
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The idea behind using generic objects is to reuse templates. The interconnections

among objects in a generic can be part of that template. Initially, generic objects did not

include this information, but now, if the software engineer chooses to include this, it can be

added to a generic object. The overall workings of the generic objects have not changed;

the procedures for building them has. Changing the grammar to store the imports and

exports with objects also allows this information to be stored with generic objects.

5.2.2 Generic Objects Along with the changes mentioned in Section 5.2.1, other

changes were made to the generic objects. Since generic subsystems may use objects that

do not have to be generic parameters, these objects can now be saved with the generic

object and automatically loaded into the application definition when the generic object is

used. This does limit the usability of the generic objects that use this capability since they

can only be used once per application definition. The software engineer has the option to

include specific object instances or not when building generic objects.

5.2.3 Domain-Specific Grammar Transitioning to the validating domain demon-

strated some of the issues that must be considered when developing a domain-specific

domain model and grammar. The artificial domain initially implemented used few at-

tributes, which were all mandatory, so the grammar did not need keywords. In the digital

circuits domain, we included more attributes, many of which are optional. The easiest way

to implement a usable grammar is to use keywords. However, we discovered that if the

keywords axe not chosen carefully they may overlap potential inputs, causing the input to

parse incorrectly. As a result of implementing the domain model and grammar for this

domain, we developed templates and recommendations for building the DIALECT domain

model and grammar. These templates and recommendations are outlined in Appendix A.

We also added the capability to include comments in the applications specialist's in-

put files. The main reason for including this is to aid in testing, but additional information

in the file may be helpful to the users of Architect.
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5.3 Limitations of the Domain

This domain provided most of the features required to demonstrate all of the capa-

bilities of Architect, but it was lacking in some areas. We modified the domain to create

specific situations to exercise specific sections of the system.

5.3.1 Not Representative of All Domains It is impossible to find a single domain

that can completely validate the performance of Architect. Domains, by definition, are

different, so implementing a single domain will show many aspects of the system, but it

cannot be viewed as representing all possible domains. For example, this domain represents

dosed systems; they do not require external input that is needed by a transaction-oriented

domain such as a bank teller system.

5.3.2 Attributes The primitive objects do not have very many natural attributes, so

we added several attributes of different data types to show the implications on the grammar

and interactive interface. If this were a true domain model, many of these attributes would

be considered extraneous.

5.3.3 Varying The Update Function Another problem was with the lack of varia-

tions in the update functions. The OCU model allows for an update function to be altered

slightly through the use of coefficients or to be completely replaced with another update

function. None of the original proposed primitive objects were natural candidates for coef-

ficients so we added a Counter primitive object that used a coefficient to set the maximum

count. We also added a secondary LED update function that prints the result differently to

demonstrate an alternate update function. If the domain model is required for more than

a proof of concept demonstration, it will require modifications to make it more realistic.

5.3.4 Import Source Types Another limitation of this domain is the lack of different

types of data to be passed between objects. Every primitive object has the same type of

input and output - boolean. The inputs and outputs for each primitive object include

a category that will limit the potential sources for an import object of a subsystem. In

this domain, however, this additional capability goes unnoticed since it never applies; all
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data is modeled as a signal. Having all the same type data being passed around led to

us concentrating on ways to improve the usability of Architect based on experiences from

this domain, but these "improvements" may be hindrances in other domains.

5.3.5 Composition Constraints A good architecture model must be able to restrict

the user from incorrectly composing components that are incompatible. In this domain, no

such restrictions exist since any primitive object can be composed with any other primitive

object. This domain did not allow us to demonstrate the full capabilities of the architecture

model.

5.3.6 Lack of Varying Functionality Some of the benefits of using generic objects

and incomplete objects went unnoticed. The concept behind using generic objects is to

provide a template for components. This can be useful in building different components

using the same template but possessing different functionality due to differences in the

parameters. However, In this domain, like objects show very little variation in functionality

or level of detail because they have no attributes that affect the execution. If a generic

object uses a 3 x 8 decoder as a parameter, all 3 x 8 decoders will have the same behavior

so each instantiation of this generic object will function the same. This also impacts the

use of incomplete objects in the grammar. If the attributes did affect the behavior of a

component, incomplete objects could be used in an application definition template where

the final behavior is determined by the attributes entered. With the digital circuits domain,

the different attributes often have only trivial effects on the behavior.

5.4 Limitations of the Implementation

5.4.1 Timing and Concurrency The digital circuits domain includes specific con-

straints, such as timing delays and concurrent execution that our system cannot currently

model. For example, given a gate with two inputs, the output of this gate depends on its

inputs. However, if the inputs do not arrive at the same time, the output may be different

for a short period of time. We currently cannot model this delay, the gate will act as if

both inputs arrive simultaneously. REFINE itself does not support parallel processing and

Architect currently does not attempt to simulate this behavior.
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5.4.2 Restrictions on Primitive Objects In the realm of digital circuits, several of

the gates could potentially have more than two inputs. These must be modeled in Architect

as separate primitive objects. For example, a two-input And gate could be one primitive

object, but a four-input And gate must be a separate primitive object. There cannot

be a single And gate object that allows a different number of inputs in different cases

even though other primitive objects could allow for similar variations without requiring

separate primitive objects. The reason for this problem is that the inputs and outputs for

each primitive object class must be incorporated in the domain model. The OCU model

uses the object inputs to build the import area for a subsystem. Each of the objects in the

import area must have a corresponding export object, otherwise the application definition

is incorrect. If this restriction is eliminated, inputs that are actually required may not

have a corresponding source. The resulting errors will not be detected until the execution

is simulated.

5.4.3 Flat Domain Model Each attribute name has the object class name prepended

to ensure that all attributes are unique. However, this does cause a limitation on the struc-

ture of the overall domain model. Basically, the domain model must be flat, that is, it

cannot take advantage of an object hierarchy. In our digital circuits domain, all of the

gates could be subclasses of a gate object class and inherit all of its attributes. Instead,

objects that represent subclasses of an object class are modeled separately and all of the

common attributes are repeated. Otherwise, attributes of the higher level object class

would not be recognized as attributes of the primitive objects in subclasses since they do

not begin with the object class name.

If the requirement to prepend the object class is lifted and the code modified, several

other changes will be required. With the addition of new object classes, the system must

be able to identify which classes can be used to create valid objects. For example, if

the domain model includes a gate object class that has And, Or, Nand, and Nor gates

as subclasses, an application definition cannot include a "gate" object since the domain

does not include this type of component. In other cases, the superclass may represent a

valid primitive object class. So if this hierarchical domain is permitted, the code must be
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modified and the decision must be made concerning how to prevent invalid object classes

from being used to build primitive objects.

5.4.4 No User-Defined Types To edit objects, Architect must be able to recognize

all of the possible REFINE data types. The edit function currently recognizes most of the

REFINE data types, specifically: integers, reals, booleans, symbols, strings, sets, sequences,

any-type and objects. It does not recognize tuples or characters. If the software engineer

defines a new type, Architect will not be able to modify any attributes of that type because

the function will not be able to determine the type of the attribute. Execution of the

SetAttribute function only recognizes integers, reals, booleans, symbols, and strings,

further limiting the possible types that can be used. The types that Architect makes

available to the software engineer and domain engineer represent the basic data types in

computer science and should be adequate to describe all the primitive objects of a domain.

5.4.5 Unknown Types If the application specialist adds a SetAttribute function

call interactively, Architect does not know the data type expected since it can be any

valid type, depending on the attribute being set. When the application specialist parses

or interactively reads in values for SetAttribute function, non-numeric values can either

be represented as a string (includes quotes) or as a symbol (no quotes). If the attribute

value is a symbol and the system represents non-numeric data as strings, or if the value

is a string and the system represents non-numeric data as symbols, a semantic error will

occur. This situation can be avoided by representing all non-numeric data as either strings

or as symbols and making the code work accordingly. This puts a further restraint on the

types of attributes, but character data can easily be represented by all string values or all

symbol values.

5.4.6 No "Black-Box" Components A subsystem in the OCU model describes all

the data it requires and uses, but it does not indicate which of these data are internal

and which are external. Without this capability, application specialists cannot treat a

non-primitive component as a "black box." When the application specialist performs the

semantic checks, Architect will prompt him to identify all of the sources for the imports,
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including the imports within the components created and loaded into the application previ-

ously and components built from generic objects. If a source already exists, the application

specialist may elect to keep the current source so he is not required to re-specify these in-

terconnections, but he must be sure to change the external connections. In contrast, if

the component is modeled as a primitive object, the details concerning its structure are

abstracted out. The application specialist is only concerned with how the component

interfaces with other components in the application.

In an effort to compare the impact of using the new primitive objects (Half Adder,

Decoder, and Multiplexer), we built two binary array multipliers, one using the new Half

Adder primitive, the other using two instances of a generic Half Adder. The application

definition using the generic Half Adder was longer and included more primitive objects,

as would be expected. Specifying objects was relatively easy. The difficulty came when

indicating how the objects were connected. During the semantic checks, when the object

import sources were identified, the application definition using the generic objects required

a total of 30 connections: 16 new, 6 confirmed (internal to the generic instantiations), and

8 changes (external to the generic instantiations). In contrast, the application definition

using the new primitive Half Adder required only 16 connections. The second application

definition obviously is much less likely to contain errors. The execution of each application

definition was identical.

5.4.7 Incomplete Error Checking One of the requirements of Architect is that all

object names must be unique. REFINE has several tools that will help maintain a correct

object base, but it cannot detect certain actions that may lead to an inconsistent object

base. REFINE can prohibit objects of the same class parsed from an input file from sharing

the same name. This is set up in the object class definition file in the DIALECT domain

model using the unique-names-class function. However, this only prevents objects of

the same class from sharing a common name. This system requires that all primitive

objects and all subsystem objects have unique names since it often does not know the

specific object class of an object when it tries to find it in the object base. If two different

primitive objects use the same name in the object base, Architect will not know which one
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to use. If an object is entered interactively, the system checks that no primitive object or

subsystem object exists with the new name so this problem will be averted.

This inconsistency in the object base can occur in other situations also. Generic

objects and saved subsystems may contain object instances. When these generic objects

are instantiated or when these subsystems are loaded into an application, Architect cannot

check that the new objects that will be added have names that are not used in the object

base already. The system has no knowledge of what objects are going to be loaded until

they are loaded into the object base, when it is too late to warn the user. The only

indication that a problem may exist is if a semantic error results (e.g., an object is used in

two subsystems) or if REFINE displays a message that it is redefining an object.

5.5 Domain Analysis

Domain analysis is not specifically part of Architect at this time, but it is required

to define the domain model. Using an artificial domain did not demonstrate some of the

potential impacts of domain analysis on Architect, but a real domain did. For example,

the process of domain analysis should cover an entire domain, but not all of the compo-

nents should necessarily be modeled in the system. The goals of the , ,erall system must

be considered when deciding which components to model. This domain contains many

similarities to the hardware world it models. If a hardware designer only has very low

level components such as Nand gates, he has the capability to design very complicated

circuits. However, the circuit will be very complex and much more prone to errors. Just

as adding higher level components, such as Adders and Multiplexers, aids the hardware

designer, adding higher level software components to a domain model aids the application

specialist. He can abstract out unimportant design issues by using a high level component

and concentrate on just its interconnections.

5.6 Summary

The digital circuits domain served well as our validating domain; it brought out

some of the weaknesses or potential weaknesses of the current implementation of Architect.
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Perhaps more importantly, it also demonstrated some of the future enhancements necessary

for our system to be useful in some domains.
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VI. Conclusions and Recommendations

6.1 Introduction

This research has demonstrated the potential applicability of domain-specific lan-

guages (DSLs). DSLs can be used as an interface between a sophisticated end-user (an

application specialist) and a specification-generation tool. The product of this tool, a

formal specification, can then be input into a code generation system to produce an appli-

cation. Several more specific results concerning DSLs were also discovered in this research

as was some direction for future research.

This chapter outlines the overall conclusions and recommendations of this research.

It starts with a review of our original goals and then the specific results of this research. The

results are classified in three categories: DSL development, don Mn analysis, and the use of

the REFINE environment. We uncovered some shortfalls in our particular implementation

of a DSL. These problems should be considered by anyone researching or developing a DSL

so that possible solutions can be investigated early in the process to avoid problems in the

final product. This thesis is part of the beginning of research into domain-specific software

development, so recommendations for future work are given to provide possible direction

for future work in this area.

6.2 Original Goals

The original goal of this research was to investigate a means of creating and ma-

nipulating a domain-specific formalized object base using a domain-specific language and

other required functions. As part of this, we needed first to define the term DSL in the

context of the overall research of domain-specific software development, and specifically

in context of the work being done to support building an application composition system.

This "big picture' approach forced us to investigate how this domain-specific software

development system should be structured and where and how domain-specific languages

fit in this paradigm. This perspective influenced the research by keeping us from viewing

DSLs in isolation.
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6.3 Results

6.3.1 Development of a Domain-Specific Language

6.3.1.1 Defined Domain-Specific Language In our context, a DSL is a lan-

guage that describes (1) instances of domain primitive objects (as defined by the domain

modeling language (DML)) and (2) the grouping (composition) of these objects and their

operations into higher-level application operations (according to the architecture model)

to form an executable application definition, which is the basis for a formal specification.

Defining the term "domain-specific language" was one of the first difficulties in this project.

Ruben Prieto-Diaz's definition of a domain-specific language (see Chapter II) provided a

good starting point, but it did not tell us what was required of, or how to implement,

a DSL. Our definition of a domain-specific language is slightly different because of our

different perspective. The main differences are the addition of the software architecture

structuring rules described in Section 6.3.1.3 and a domain modeling language (DML)

explained in Section 6.3.1.2.

6.3.1.2 Incorporated Domain Modeling Language One of the keys to our de-

velopment of a DSL was the use of a domain modeling language (DML) to describe the

domain model. James Neighbors' version of a domain language describes the domain ob-

jects and operations, but we describe them using a DML, not a DSL. Our DML acts as a

meta-language described in Neil Iscoe's research and formally models the domain's objects

and operations. The use of a DML separates domain analysis and modeling from devel-

opment of domain-specific languages. The DML represents the information gathered from

domain analysis as a formal model which then becomes the basis for the development of a

DSL. The DSL is still dependent on the resulting domain model and uses the objects and

operations defined in the domain model.

6.3.1.3 Incorporated Architecture Model Our DSL is a formal language that

serves as a specification language for applications in the domain, but it also includes one

aspect not part of DSLs described in the literature or other requirements languages -

an architectural model. Common architectures are one of the results of domain analysis,
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but rather than incorporating this information in each DSL, we use a general architectural

model and domain-specific rules defining valid combinations within the model. The Object

Connection Update (OCU) model fills the role of our architectural model, providing the

framework for all application definitions, regardless of the domain. The use of a general

architecture model gives structure to the resulting specification.

6.3.1.4 Demonstrated That A DSL Does Serve as a Requirements Language

A DSL must be able to specify an application, but does it fill the role of defining require-

ments? Recall from Chapter I1 the features Sol Greenspan described as being necessary in

a good requirements language (9:3-4):

1. Direct and natural modeling of the world,

2. Support the organization and management of large descriptions,

3. Allow expression of assertions (what is true in the world), entities (objects in the
world), and activities (events that cause change).

4. Be uniform in its use of basic principles so that it will be easy to learn and use,

5. Be formal, its features defined precisely,

6. Provide guidance in modeling large-scale problems.

Item 1 is handled by using an object-oriented approach. Objects represent real-world

entities and the operations represent the possible behaviors of the objects. Item 2 depends

partially on the domain model. If primitive objects in the domain model are built using

abstraction principles, the corresponding DSL will also use these features. This points out

one of the differences in Greenspan's Requirements Modeling Language (RML) and the

DSL developed; our DSL depends on the domain model whereas RML does not. A software

engineer using RML builds the state space needed for the application instead of using a

defined domain model. Two of the three components listed in item 3 are present in the

DSL developed: only assertions are missing. These assertions were not needed to satisfy

the immediate goals of this research but will be required before a complete specification

can be generated. Entities are the objects, and activities are the associated operations.

Even though DSLs are by definition different for each domain, they all share the same

basic structure and are built according to the same principles (item 4). A requirements

language must be formal (item 5), so we built our DSL based on formal architecture and
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domain models so that all the features are indeed defined precisely. Guidance for modeling

large-scale problems (item 6) comes from the architecture model incorporated in the DSL.

It determines the packaging of components into higher level components. Thus our DSL,

when combined with the domain and architecture models, does meet most of Greenspan's

features for a good requirements language.

6.3.2 Role of Domain Analysis Our experience with the validating domain demon-

strated the flexibility of Architect regarding the domain model. The software places no

restrictions on the domain model regarding the level of abstraction of the primitive objects.

For example, the initial domain model for our validating domain included only low-level

gates such as And, Not, and Or gates, but we were able to build larger components such

as decoders and half adders from these primitives and use them in larger circuits. After

we added half adder and decoder primitive objects, we were able to replace the low-level

primitives with these new objects and maintain the same behavior in the application. The

domain engineer and software engineer must build a domain model that contains the ap-

propriate levels of abstraction required to build applications within the domain. Then, it

is the responsibility of the application specialist to use the appropriate primitives in each

application definition to achieve his objectives.

6.3.3 REFINE Environment Is Conducive to Building Prototypes Overall, the Soft-

ware Refinery Environment provided a powerful, flexible platform for this research. The

tools in the environment: the REFINE language, DIALECT, the object base, and INTER-

VISTA, each contributed to some aspect of the research. Having this integrated tool set

allowed us to focus on each specific task, developing a language or writing an application,

without having to worry about interfacing with other modules.

Using the Software Refine Environment did have some disadvantages. In the case of

the DML, REFINE has too much flexibility to be used without some additional structure

(see Section 6.5.2 for more discussion). This environment is better suited for developing

prototypes rather than production systems. It lacks the required efficiency; REFINE is

built on Lisp which is an interpretive language so the code is not executed directly.
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6.4 Problem Areas

6.4.1 DSL Cannot Handle All Grammar Constraints Directly Some constraints are

best implemented through the grammar, while others are best done through a separate

semantic check. While still using our initial artificial domain problem, we had two grammar

constraints, one that disallowed having more than one of a particular object in a subsystem,

and another that prohibited consecutive if statements. We implemented the second (no

consecutive if statements), but it required us to change the DIALECT domain model by

adding an additional intermediate object. This is because DIALECT itself has additional

constraints on the format of the productions in the grammar, namely that all symbols on

the right side of a production must map directly to attributes of the object. Even though

the productions are written using regular expressions, each part of the regular expression

must map to an attribute of the object. A single attribute cannot be described by a complex

regular expression. This wasn't a problem until we tried to go through the update function

and execute the statements. We now had an additional layer requiring an additional check

before we could look at the statement. The same thing would have happened for the other

constraint. In the case of no consecutive if statements, the changes had to be made to

portions of the DIALECT domain model describing the architecture model. However, this

cannot be allowed since this portion of Architect must remain domain-independent.

These constraints and other similar restrictions cause problems for two main reasons.

The constraints are either context-sensitive or they cannot be handled directly by the

DIALECT grammar structure (as described above). In the first case, the grammar would

become context-sensitive to handle the constraints. Allowing a context-sensitive grammar

creates a very complicated language that is difficult to handle. The solution is to test

for these types of constraints during the semantic checks. The semantic checks are easier

to write, and they can be domain-specific without affecting the domain model. Having a

minimum number of restrictions placed on the grammar will make pruducing a grammar

for a DSL much simpler for the software engineer. The disadvantage to this is that the

application specialist does not get a report of the error until he performs the semantic

checks.

6-5



6.4.2 Restricted Domain Model Currently, Architect assumes that an application

is part of a single domain, but very often applications cross several domains. Architect

assumes that the domain model being used describes the entire application domain. If this

is not the case, two or more already established domains can be merged by loading all the

object class definition files into the object base and either creating a single grammar that

includes all of the productions or using DIALECT'S grammar inheritance. In addition to

this, the software engineer must merge the semantic checks and resolve any inconsistencies

created. One major problem with this approach is that the only domain-specific constraints

that are checked are within a single domain since Architect cannot check for inconsistencies

caused by merging domains unless the software engineer writes additional functions. Also,

we assume that domains are independent, but very often domains can more realistically

be described by a hierarchy. If this is the case, it is up to the software engineer and the

domain engineer to build the appropriate domain model because they cannot automatically

specialize an already defined domain without building a whole new domain model. The

domain model itself is limited by REFINE, which does not support multiple inheritance, so

object classes cannot inherit from two different object classes.

6.4.3 Simplistic Update Functions Although the OCU model can support multi-

ple update functions for a given object class, it restricts variety between these different

functions (at least as it is currently implemented). The implementation currently assumes

that all the update functions use the same inputs and outputs, and the sources for all

inputs are required to be defined by the application specialist regardless of whether they

are used. This is not an issue for the validating domain since all the primitive objects

have only one realistic update function. In other domains, this could become a problem.

Alternative interpretations of the OCU model could be implemented to fix this situation if

required, but they will have impacts. It will take further investigation of the OCU model

to determine the best course of action.

6.4.4 Patterns of Control Not Implemented This feature turned out to be very

difficult for several reasons. First, it is difficult to define a pattern of control for any

domain. Second, to be useful, the overall procedures to build subsystems from patterns
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of control must be domain-independent. This means that the patterns of control must all

follow some general structure and the domain-specific knowledge must be represented in a

domain-independent form. This in itself can be its own research topic: how to represent

knowledge. As the OCU model implementation matures, it may generate possible common,

domain-independent templates that can be used as patterns of control. More research is

needed in knowledge representation to determine a means of storing domain-dependent

patterns of control.

6.5 Recommendations for Future Research

6.5.1 Improve Capability for Reuse This thesis cycle will produce the foundation

for future work in this area, but more work is needed to completely demonstrate the

viability of this type of system. We have focused on building the general framework, but

we may have placed too much of a burden on the application specialist. For Architect to

meet its potential, it must allow greater abstraction for easier reuse of previous application

definitions. The application definition currently must be written at too low a level. The

OCU model is intended to be a tool for the domain engineer to use to "capture the patterns

of structure and behavior of the real-world subsystems being modeled" (5), but we require

the software engineer to build generic templates and the application specialist to either use

these templates or build his own subsystems. The application specialist has little guidance

on constructing a domain-specific architecture. Part of the problem is that it takes time

and experience to build up the domain model and technology base and the short thesis

cycle did not permit such a domain model and technology base to develop.

Architect has the tools to build domain architectures - generic objects, existing

objects, and eventually, patterns of control - but there is currently no way to effectively

combine them for high level reuse. We need a better method of building models for

reuse. This will require modifications to the current OCU model implementation. For

example, adding a means to characterize inputs as being either internal or external to

a subsystem will allow for better "packaging" of a subsystem and greater abstraction

since the application specialist is only concerned with external interfaces when reusing a

subsystem.
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6.5.2 Conduct More Research On Domain Analysis and Domain Modeling Our

development of DSLs depends on domain analysis and domain modeling which are both

poorly defined. If the domain model is not built properly, the corresponding DSL will also

be incorrect. More work should be done in these areas, specifically; to investigate other

domain modeling languages and tools. REFINE is very effective in describing the domain

model, but it can be difficult to work with since it is so flexible and powerful and does

not include any constraints or guidance on building a domain model. Potentially, a tool

similar to KIDS could be built over REFINE to help model a domain. Another approach is

to develop a meta-model as described by Iscoe to define the overall structure of a domain

model. This meta-model is then instantiated into a domain model using domain knowledge.

Since all of our domain models have the same operational goal, they should follow a similar

pattern, so this could be a viable option.

6.5.3 Investigate Expanding Current Architecture Model and Other Possible Models

More work needs to be done to completely define the OCU model. As it evolves, the

changes must be incorporated into our software. This research has demonstrated some

of the strengths as well as weaknesses of the current definition of the OCU model that

should be considered for future OCU development. Other architecture models should be

investigated to determine if they could replace our implementation of the OCU model or

if they could influence the OCU model development.

6.5.4 Expand Visual System The visual system is undergoing development as this

research is being completed. This area is very important to Architect and should be

expanded. The current implementation of Architect using only a grammar and simple

interactive interface is much more difficult to conceptualize and manipulate than necessary.

A visual system can reinforce the concept of building an application definition specification

from existing models by showing the user the building blocks.

6.5.5 Build Technology Base Extender The research done in this area will benefit

the development of the technology base extender described in Chapter III but not yet

implemented. Building and extending a domain model (and technology base) should use
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the same techniques so the research can be used in both areas. Early in our research, we

questioned the usability of a DSL to the software engineer to extend the technology base.

To some extent, the DSL can be used by the software engineer in this role; he uses the

DSL to build components and generic objects. However, the domain model is built using

the domain modeling language, not the domain-specific language. The best approach to

extending the technology base is to look at the implementation of the DML, not the DSL,

to see how it can be used to not only build an initial domain model, but also to extend

the model.

6.5.6 Incorporate More Use of Domain Knowledge The role of domain knowledge in

this type of system cannot be overstated. Our current system does not use this information

nearly to its full potential. Domain knowledge is incorporated into the primitive objects

and operations in the domain model and in the domain-specific semantic checks, but it

can be used in a much more powerful role. According to Kelly and Nonnenmann, "domain

knowledge is used to correct routine omissions and errors in scenarios, constrain the space

of possible scenario generalizations, shape the structure of models used in model based

reasoning, and plan queries posed to its human oracles" (13:43). To be used, this domain

knowledge must be codified in some form useful to the system, i.e., we must find some

representation.

This knowledge representation is required to implement the patterns of control dis-

cussed in Section 6.4.4 and domain-specific semantic checks. Currently, Architect can easily

support the software engineer in developing the simple semantic checks, but it provides

no guidance or framework for more complicated checks. A structured rule base, whose

rules are populated by the software engineer, and an inference engine to apply the correct

rules appropriately is needed. Our use of domain knowledge has not reached this level of

sophistication, but this skould be a long-term goal.

6.5.7 Consider Draco Approach for Further Development James Neighbors' do-

main description for his Draco approach includes a parser, prettyprinter, transformations,

components, and procedures. We currently have implemented a parser and prettyprinter

(built using DIALECT). The transformations, components, and procedures are needed as
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part of the next stages of development, design and implementation. Much of Neighbors'

ideas and techniques do apply to this research, but his research goes beyond what we have

implemented so far. As Architect evolves, Neighbors' work can help define steps that need

to be taken and how best to implement these steps.

6.5.8 Add Invariants Greenspan's definition of a good requirements language in-

cludes assertions or invariants (what must always be true in the system), but Architect

currently does not model these conditions directly. Two different cases can arise: domain-

specific invariants or application-specific invariants. The domain-specific invariants must

be modeled as part of the domain model and the application-specific invariants must be

included in the DSL. To do this, the first step is to find a consistent representation for all

invariants. The domain-specific invariants are then stored with the domain model and the

application-specific invariants must be included as a new sentence in the DSL grammar.

Since these invariants may affect the behavior of the prototype, they should be checked

during execution. These invariants are needed to generate a complete specification.

6.5.9 Add Exception Handling Another aspect missing in Architect is exception

handling. If the execution step comes across an error, it is not handled except possibly by

the update algorithm. However, not all exceptions will be raised during a procedure call

that can handle it; the exception could be a side effect.

6.5.10 Add External Interfaces The OCU model supports specification of the hard-

ware interfaces, but this is not currently implemented. In the future, this feature must be

further defined and incorporated into the imrlementation of the OCU model (or whatever

architecture model is used). This information will be necessary to generate a specification.

6.5.11 Build a Specification The natural next step in the software development

process is to build a specification. The exact implementation of this step depends on the

expected use of the specification. If it is to be z.n input to another automated tool, it

must have a precise structure; otherwise, the exact structure is not as important. Several

of the components needed to build a specification have already been discussed: external

interfaces, invariants, and exception handling. Once these have been added, the next step
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is to determine the format of the specification. If anything for the specification is still

missing, it must be added at this time. Transformations or other procedures to extract

information from the object base are then needed to create the specification.

6.6 Conclusion

The overall goal of this research was not simply to build a domain-specific language,

but also to investigate the implications of building a system using a DSL. We first decided

what capabilities a DSL must possess, determined how to implement these features in

Architect, and then built a prototype. The prototype system brought out some of the

weaknesses of our implementation, but more importantly, it demonstrated the effectiveness

of using a DSL in this context. A DSL is a tool that lets sophisticated users specify systems,

"a key feature in program generation or program synthesis systems. We also discovered that

"a DSL can be combined with a domain modeling language and an architecture model to

increase the power of a DSL while isolating specific features to allow for easier modification.

It is clear that software development of the future must be improved; the lessons learned

from this research can provide direction for future research in this important area.
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Appendix A. Software Engineer's Responsibilities

The software engineer has several responsibilities in keeping the system functioning

properly. He must build and maintain the domain model, grammar, and semantic checks

for each domain; architecture model domain model, grammar, and semantic checks; direc-

tory structure; and load files. This appendix outlines these responsibilities. It assumes a

working knowledge of the REFINE environment.

A.1 Building Domain Model

Several pieces of information must be present in the object definition file for each do-

main primitive object for the system to run correctly. The following explains this required

data. Figure A.1 shows a sample template of a domain primitive object definition. In all

cases, "OBJECT-CLASS" is replaced with the appropriate object class name.

A.1.1 Inputs and Outputs Each object class must contain definitions of the inputs

and outputs for each object instance of that class. These definitions must be specifically

named - the object class name followed by "-INPUTS" or "-OUTPUTS." Figure A.1

shows an sample object class with one input and one output. If the object class has more

inputs or outputs, the set-attrs command is repeated for each additional input or output.

If the object has no inputs or outputs, the corresponding variable is set to the empty set

(f}).

Each input and output has three parts: name, category, and type-data. The name is

used to determine a specific input or output if more than one exists. The category refers to

the general type of data it consumes or produces. This is used to limit the possible sources

of data that can be used. For example, the category could be temperature or time. The

final piece, data-type, refers to the specific data type, i.e., real, integer, symbol, string, etc.

A.1.2 Coefficients and Update-Function The following two entries in Figure A.1:

OBJECT-CLASS-COEFFICIENTS and OBJECT-CLASS-UPDATE-FUNCTION are at-

tributes required for each object definition. The first sets up the coefficients used for each

A-1



!! in-package("RU")

!! ±n-grammar('user)

vat OBJECT-CLASS : object-class subtype-of Primitive-Obj

vat OBJECT-CLASS-INPUT-DATA : set(import-obj) =
{set-afire (make-object('import-obj),

'import-name, 'input-name,
'import-category, 'signal,
'import-type-data, 'boolean)}

var OBJECT-CLASS-OUTPUT-DATA : set(export-obj) =
{set-attrs (make-object('export-obj),

' export-name, ' output-name,
'export-category, 'signal,
'export-type-data, 'boolean)}

vat OBJECT-CLASS-COEFFICIENTS : map(OBJECT-CLASS, set(name-value-obj))
computed-using OBJECT-CLASS-COEFFICIENTS(x) =
{set-attrs (make-object('name-value-obj), 'name-value-name, 'max-count,

'name-value-value, 3)}

vat OBJECT-CLASS-UPDATE-FUNCTION : map(OBJECT-CLASS, symbol)
computed-using OBJECT-CLASS-UPDATE-FUNCTION(x) = 'OBJECT-CLASS-UPDATE

SOther Attributes:
var OBJECT-CLASS-ATTRI : map(OBJECT-CLASS, integer)

computed-using OBJECT-CLASS-ATTRI(x) = 0

vat OBJECT-CLASS-ATTR2 : map(OBJECT-CLASS, set(symbol))
computed-using OBJECT-CLASS-ATTR2(x) = {}

vat OBJECT-CLASS-OPEN? : map(OBJECT-CLASS, boolean)
computed-using OBJECT-CLASS-OPEN?(x) = nil

form MAKE-OBJECT-CLASS-NAMES-UNIQUE
unique-names-class('OBJECT-CLASS, true)

function OBJECT-CLASS-UPDATE (subsystem : 8ubsystem-obj,
some-obj : OBJECT-CLASS) =

sequence of calls

function OBJECT-CLASS-UPDATEI (subsystem : subsystem-obj,
some-obj : OBJECT-CLASS) =

sequence o• calls

Figure A.I. Sample Object Definition

A-2



object instance, the second tells which upda:• function is to be used for a particular in-

stance. Both these attributes are used for the Object Connection Update (OCU) model.

(See (1) for more details).

A.1.3 Attributes Next are all of the attributes that describe the object class. As

with the other information used to describe an object class, eaclh name must be prefixed by

the object class name. An attribute called DELAY will become OBJECT-CLASS-DELAY.

All objects have a NAME attribute which is a REFINE defined attribute; it is not specified

in the domain model. The computed-using clause gives each attribute an initial value.

This is useful in two cases. The first case is when the attribute value rarely changes, the

attribute can be optional in the grammar so the user does not have to supply a value

unless it is different from the default. The second case is witL ttributes that are a set or a

sequence. Haiing these two attribute types defaulted to the empty set or empty sequence

frees the code from checking if the set or sequence exists before trying to manipulate it.

A.1.4 Make Names Unique The form MAKE-OBJECT-TYPE-NAMES-UNIQUE

makes all of the object instances of the given class unique. REFINE will prohibit any objects

of this class to be created if an object with the same name already exists in the object

base.

A.1.5 Update Functions Finally, the update functions define the behavior of objects

of the specified class. An object may have several different update functions. Normally,

they will be similar, differing in some area such as level of precision. Which function a

particular object instance is to use is stored in the OBJECT-TYPE-UPDATE-FUNCTION

attribute and is set by the application specialist.

A.2 Grammar

The software engineer must develop a domain-specific grammar for each domain that

is to be used. T*.is is not difficult, provided the domain was built using the template de-

scribed in Section A.1. However, he must consider several issues as illustrated in Figure A.2
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in-package("RU")

in-grammar('syntax)

grammar Grammar-lame

no-patterns

inherits-from OCU

start-classes Spec-Obj, Subsystem-obj, Application-Obj,
Incomplete-Obj, Generic-Obj, Object-Class, ...

file-classes Spec-Obj, Subsystem-Obj, Application-Obj,
Incomplete-Obj, Generic-Obj, Object-Class,

product ions

Object-Class ::= ["Object-Class" name
{ ["attrn" Object-Class-Attrl)

[(["is open" !! Object-Class-Open?] I
["not open" -!! Object-Class-Open?))] }

"attr2:" Object-Class-Attr2 I builds Object-Class,
other domain objects ...

symbol-start-chars
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPqRSTUVWXYZ./*"

symbol-continue-chars
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLNNOPQRSTUVWXYZ-0123456789./*?"

comments "%" matching "

precedence

for expression brackets "(" matching ")"

(same-level "and", "or" associativity left),
(same-level "<", "<=', "=", ">=", ">", "/=" associativity none),

(same-level "+","-" associativity left),
(same-level "C", "/", "mod" associativity left),

(same-level "not" associativity none),
(same-level "abs" associativity none),

(same-level "**" associativity right)

end

Figure A.2. Sample Grammar
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and described below. The DIALECT User's Guide (23) has more details on how to build a

grammar.

A.2.1 Keywords Using keywords for each attribute creates a grammar that is easier

to use and much more likely to parse correctly (less chance of shift/reduce or reduce/reduce

conflicts). However, the keywords must be chosen carefully so that they do not overlap

possible data in the input being parsed. For example, if an object has an attribute called

OBJECT-CLASS-ATTR1, it may be used in a SetState call. The SetState function

does not require the entire attribute name, only the name without the object class name

is needed (e.g., ATTRI ). If this short version of the attribute name is used as a keyword,

no SetState calls with that attribute will parse correctly. One easy way around this is

to add a ":" after each keyword so for OBJECT-TYPE-ATTR1, the keyword could be

"ATTRI:". Finally, DIALECT requires all keywords to be entered in lower case.

A.2.2 Required and Optional Attributes Not all of the attributes may be required to

describe an object. If the attribute is optional, the part of the production that describes the

attribute should be between braces ({ }). For example, in Figure A.2, OBJECT-CLASS-

ATTR1 and OBJECT-CLASS-OPEN? are both optional, so they are enclosed in braces.

In the case of several optional attributes, each keyword-attribute pair should be enclosed in

brackets ([ ]) to indicate a sequence of elements. In Figure A.2, OBJECT-CLASS-ATTR2

and name are both required. The name attribute must be specified as a mandatory attribute

for each domain primitive object, otherwise objects cannot be referenced after they have

been built.

A.2.3 Boolean Attributes Another special case is shown in this example, boolean

attributes. In this case, the keyword used indicates whether the attribute is set to true or

false. If using the grammar shown in Figure A.2, the phrase "is open" will set the attribute

OBJECT-CLASS-OPEN? to true while "not open" will set it to false. Boolean attributes

will follow the form: (["true keyword" !! attr-name] I ["false keyword" ,,.!! attr-name]).

A.2.4 Header Information Each domain-specific grammar must have a name which

is specified in the grammar Grammar-Name phrase. The name can be any valid REFINE
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symbol. The no-patterns key word indicates that the grammar is to be built without

patterns (the grammar may not compile if this is omitted). The inherits-from OCU

is necessary to include all of the productions defining the OCU model. Start-classes

and file-classes tell which productions can be parsed individually and from a file,

respectively. Each of the objects listed (except Object-Class) must appear on these lines,

along with all of the domain primitive object classes.

A.2.5 Other Required Elements The rest of the template in Figure A.2 must be

used as shown. Symbol-start-chars and symbol-continue-chars define which char-

acters can begin and continue, respectively, symbol characters. If the software engineer

defines an attribute name that uses characters not in these lists, these characters should

be added where appropriate. The comments "." matching "(carriage return)" com-

mand allows comments to be embedded in the application definition. In this example,

comments begin with a % and are terminated by a carriage return. Comments must not

necessarily begin with a % nor end with a carriage return; they can begin and end with

another character or sequence of chaxacters. If comments are used, the comment delimiters

can not be a part of the grammar (e.g., parentheses can not be used for comments since

they are used in the grammar). The precedence keyword and the following precedence

table is needed as shown.

A.2.6 Changing the Grammar If either the domain-specific or the architecture

grammars change, all of the saved objects, generic objects, and application definitions

may become obsolete. If the change is minor, the files containing the objects can be edited

so that they will consist of legal sentences in the new grammar. The alternative is to

recreate the objects and save them to the technology base, overwriting the existing files.

A.3 Domain Semantic Checks

Often, the domain model cannot adequately scope a data type to a specific, valid

range. If an attribute is an integer between 1 and 10, the attribute must be defined as an

integer. If the application specialist defines this attribute to be 20, the object will parse

correctly. The solution to this problem is to create simple REFINE rules to check for simple
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semantic errors such as the one just described. These rules will be called from the check

semantic routine.

A.4 Generic Objects

Building a generic object can be confusing. The best way to attack this process is

to carefully define exactly how this generic object is to look. Subtle diffcrcnces in how a

generic object is built can impact heavily how it is used, so the software engineer must

know exactly what the application specialists need.

A.4.1 Building Generic Objects The basic steps to build a generic object are:

1. Build a subsystem or domain primitive object that represents an instance of the
generic object being built. If it is a subsystem and the import sources are to be
included (i.e., interconnections defined), include all objects that are needed to make
it execute.

2. Parse it into the object base as if it is part of an application definition.

3. Build the import and export areas and assign import sources, if desired. This can
be done by running the semantic checks.

4. Although not specifically required, the object instance can be built as part of a valid
application definition and executed to test that it functions as intended.

5. Apply Build-Generic rule to indicate which parts of the object are to be considered
parameters.

6. Apply the Save-Generic to save the generic object to the technology base.

When building the instance to be made generic, any of the attribute values can be

parameters that are replaced by a specific value designated by the application specialist. It

is a good idea to use a descriptive name when possible because the parameter name is used

as a prompt to the application specialist if he is entering the generic instance interactively.

For example, he shouldn't use a parameter name such as and-gatel; a more preferable

name would be And-To-Carry-Output. The name should not be one that could be used

somewhere in an application definition. If the application specialist uses a name that is

a parameter name in the generic object, the system could instantiate the generic instance

incorrectly. If the parameter is a number, it is best to use a number that would not be
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used normally, such as -99 for a loop variable. It does not make sense to use a boolean

value as an parameter.

Each parameter must be uniquely named, but it may reference an attribute that

occurs multiple times in the object. An object in a subsystem will appear in the controls list

and in the update procedure, which is the case in the simple example shown in Figure A.3.

When the generic instance is instantiated, each occurrence of the parameter will be replaced

with the parameter specified by the application specialist.

generic-obj GENERIC-NAME GENERIC-OBJECT-NAME
ids: OBJ1, OBJ2, OBJ3, -99
types: AN-OBJECT, AN-OBJECT, AN-OBJECT, INTEGER
objects:

subsystem GENERIC-OBJECT-NAME is
controls: OBJi, OBJ2, OBJ3
update procedure:
while some-value > -99 do

update OBJ1
update OBJ2
update OBJ3

end while
update OBJ1
update OBJ2

Figure A.3. Sample Generic Object

Some generic subsystems may require objects that do not need to be parameters.

These objects can be defined with, and stored as part of, the generic object. When the

application specialist instantiates this generic object, he will automatically get all of these

objects in his application definition.

A.4.2 Considerations Several factors must be considered when building generic

objects. First, the software engineer must know how a specific generic object is to be used

in application definitions so he can build a useful generic object. Frequently the decision as

to what should be parameters is not clear-cut and this decision will affect the usefulness of

a generic object. If the generic object includes additional objects, it will be easier to use,
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the application specialist has less to specify, but it can only be used once in an application

definition. Another decision the software engineer faces is where to make the boundary

for the generic object. Should it include all related objects, or should they be left to other

objects in the application definition?

The system currently performs little checking on the software engineer's input when

building a generic object. It does check that the specified parameter does occur in the

object and the objects to be included with the generic object must exist in the object base.

A. 5 Directories

The directory structure is determined entirely by the users of the system; nothing is

hard-coded. If several domain models reside on the same disk, the paths can be relative

to the current working domain directory. For example, if object instances are stored as a

subdirectory to the technology base, which is a subdirectory to the working domain direc-

tory, the path to access these objects should be "./tech-base/objs" (using the appropriate

directory names). If the users of the system have, for example, two different categories of

objects, they can set up two subdirectories below the root path for objects.

The software engineer will define the root directory for each of the three different

types of objects that can be saved: application definitions, object instances, and generic

objects. This supplies a central root directory for each different type of data. In Figure A.4,

assuming the working directory is "Domain1", the application definitions are stored in

"./tech-base/applics," the object instances are stored in "./tech-base/objs," and generic

objects are stored in "./tech-base/generics." If "Domaini" is not the working directory,

the paths should be adjusted accordingly. These paths are stored with the global variables.

If the software engineer wants to categorize the data further, he can create subdirectories of

these root directories. For example, he may want to put all object instances in a directory

called "objs." If he wants to categorize the objects by type, he can create subdirectories

such as "ADDER," "DECODER," etc. The software engineer may also create directories

for input files or leave that responsibility to the application specialist.
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DomainI

code tech-base domain-model

appics objs genercs

USER1 USER2 USER3 COMPONENTS SYSTEMS
1 -1

ADDER DECODER

Figure A.4. Example Directory Structure

There is one restriction on the subdirectories to the root directory given by the

software engineer: the names must be upper case. The application specialist's input may

request objects to be loaded or generics instances to be instantiated. In both cases, he

must give the path name if the object is not in the root directory of that type. This path

is stored as a symbol, which when converted to a string, becomes upper case. Since Unix is

case-sensitive, the directory paths must match the actual directory structure exactly. All

path names entered from the prompt will be converted to upper case so they will match

the directory structure.

A.6 Load Files

Along with the entire domain model, all of the program files must be loaded into the

object base before the system can be used. This can be made much easier by using load files.

These files are simply lisp functions that load all of the required files into the object base.

This reduces the loading process to two commands: (load "load-file-name") followed

by the call to the lisp function (function-name) to load the system files (parenthesis
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included). This load file must begin with a call to load DIALECT (i.e., (load-system

"dialoct" "1-0")) since DIALECT is used by the grammars. The load order is important;

as with programming languages, files that include function calls to functions in other files

must be loaded before the calling functions. In this system, all of the files that define a

DIALECT domain model must be loaded before the corresponding grammar can be loaded.

REFINE must be told to change to the new domain-specific grammar. This is done using

the REFINE command (in-grammar 'grammar-name) after the grammar has been loaded.

For the REFINE rule search command to run properly, REFINE must have a defined current

node. This can be done in the load file by adding a line (mcn ' obj ect-name) where object-

name is any object in the object base. Examples of objects that can be used include all of

the global variables in the system and REFINE global variables. The application specialist

will change the current node once he has parsed an application definition.

Two separate load files should be used, one for the application specialist (see Fig-

ure A.5), the other for the software engineer (see Figure A.6). The software engineer

requires the additional functions needed to build generic objects so these program files

should be included in his load files. The application specialist does not need this ca-

pability and should not see the rules for building and saving generic objects in his rule

searches.
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(defun load-fileeC)

(load-system "dialect" "1-0")

(load II./OCU-dm/dzn-ocu")
(load "./OC-dm/grazu-ocu")

(load "./DSL/globals")
(load "./DSL/lisp-utilities.lisp")
(load "./DSL/obj-utilities")
(load "./DSL/read-utilities")
(load "./DSL/erase")
(load "./DSL/menu")
(load "./DSL/display-files")
(load "./DSL/modiiy-obj")
(load "./DSL/save"l)
(load "./DL/generic")
(load "./DSL/complet.")

(load "./OCU/set-debug"f)
(load "./OCU/imports-exports")
(load './OCU/eval-expr")
(load "./OCU/execute"l)
(load "./OCU/semantic-checks")

(load "./domain-model/and-gate"l)
(load "./domain-model/or-gate")
(load "./domain-model/nand-gate"l)
(load "./domain-model/nor-gate"l)
(load "./domain-model/not-gate"l)
(load "./doaain-model/switch")
(load "./donain-model/jk-flip-flop")
(load "./domain-.odel/led")
(load ". /domain-model/counter")
(load "./domaiu-model/decoder")
(load "./domain-model/half-adder")
(load "./domain-model/mnx')
(load "./domain-model/gram-logic")

(in-grammar 'circuits)

Figure A.5. Samnple Load File for Application Specialist
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(defun load-f iles()

(load-.ystom "dialect" "1I-0")

(load "I./OCU-dm/dz-ocu")
(load "./OCU-du/gram-ocu")

(load "./DSL/globals")
(load "./DSL/liep-ut ilit ies. lisp")
(load "./DSL/obj-utilities")
(load "./DSL/read-utilities")
(load "./DSL/erase")
(load "./DSL/menu")
(load "./DSL/display-files")
(load "I./DSL/modify-obj")
(load "./DSL/save")
(load "I./DSL/generic")
(load "./DSL/build-goneric")
(load "./DSL/couplete")

(load "./OCU/bet-debug")
(load "./OCU/imports-exports")
(load "I./OCU/eval-expr"l)
(load "./OCU/execute")
(load "./OCU/semantic-chocks")

(load "./domain-model/and-gat .")

(load "./domain-aodel/or-gate"l)
(load "./domain-model/nand-gat.")
(load "I./domain-model/nor-gat.")
(load "./dozain-model/not-sate")
(load "./domain-model/.witch")
(load "./douain-model/ jk-flip-f lop")
(load "./dozain-model/led")
(load "./domain-model/counter")
(load "I./douain-model/decoder")
(load "./domain-.odel/half-adder")
(load "./domain-.odel/mix")
(load "I./doimain-model/graun-logic")

(in-gramsar 'circuits)

Figure A.6. Sample Load File for Software Engineer
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Appendix B. Application Specialist's Responsibilities

This appendix is intended to provide guidance to the application specialists in creat-

ing application definitions and using the system in general. It assumes a working knowledge

of the REFINE environment. This appendix describes how the system works as of the end

of this particular research, this is expected to change as the visual system is implemented.

B. 1 Starting

The software engineer should have file(s) to load the object base already writ-

ten for each domain. To run the system, start REFINE, then load the load file (load

"Iload-file-name"), and finally call the function that loads the files: (function-name).

The system should then be ready to accept input. (For more information see the REFINE

User's Guide (24).)

B.2 Creating New Application Definitions

B.2.1 Building Input Files The input files can be produced in any text editor that

can generate ASCII files. The input must contain valid sentences defined in the architecture

and domain-specific grammars. The application specialist should be aware of the format

for each of the valid sentences; if not, he should have the software engineer explain them.

Here is an overview of possible input:

"* Build domain-primitive object instances

"* Build subsystems

"* Instantiate generic objects

"* Load existing objects

"* Specify incomplete objects

Once this file has been created, it is ready to be parsed into the object base.

B..2.2 Using Generic Objects The system has no built-in knowledge about generic

objects so the application specialist must know ahead of time how each generic object can

be used. If a generic instance is built or edited interactively, the system prompts for all
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the required input, but it will not explain how each piece of data is used in building the

new generic instance.

Generic objects, like saved instances, can be stored in different subdirectories to

allow for classification. When specifying a generic object in the grammar, the application

specialist must give the path of the generic object. All generic objects share a common root

directory that will be defined by the software engineer, but generic objects can be stored in

any number of subdirectories. If the generic object is in this root directory, only the generic

object name is required. For example, if the application specialist wants to use a generic

object named GENERIC-ADDERi which is stored in the generic object root directory, he only

uses the name. If, however, this generic object is stored in a subdirectory, such as ADDERS,

then the application specialist refers to the generic object as adders/generic-adder1.

The system converts all paths and file names to upper case so the case in which the names

are entered is unimportant.

B.2.3 Using Existing Objects Objects and application definitions can be saved into

the technology base for future use. The application specialist has the capability of retriev-

ing these objects. However, since all names must be unique, an object can only be used

once in the object base. If an object is needed more than once in an application definition,

the application specialist should talk to the software engineer about converting it to a

generic object.

B.2.4 Naming Objects All objects must have unique names. If two objects of the

same class are given the same name, the system will only recognize one object. If the

object is entered interactively, the system will check that no object of that name exists,

so the application specialist is prevented from causing problems of this type. The other

situations where unique names becomes an issue are described in Sections B.2.3 and B.2.2.

The final complication is with generic objects that use internal object instances. Only

one instance of a generic object that uses internal objects can be used at a time since the

system loads those specific instances into the object base. Again, the application specialist

will need to get the details from the software engineer about the generic objects.
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B.3 Using the Interface

.> (rs)
- Rules for: ##r USER var FATAL-ERROR: boolean = false -

1) ERASE-APPLICATION-DEFINITION
2) EDIT-AN-OBJECT
3) ADD-Al-OBJECT
4) DELETE-AN-OBJECT
5) SAVE-OBJECT
6) SAVE-APPLICATION
7) LOAD-OBJECT
8) LOAD-APPLICATION
9) PARSE-INPUT
10) ADD-GENERIC-INSTANCE
II) BUILD-GENERIC
12) SAVE-GENERIC
13) COMPLETE-APPLICATION-DEFINITION
15) CHECK-SEMANTICS

Figure B.1. Sample Rule Search

B.3.1 Applying Rules Until the graphical interface is developed, interaction with

the system is done through REFINE rules. REFINE lists potentially applicable rules when

given the (rs) command (see Figure B.1). Each rule will be listed next to a unique

number. A specific rule can be applied (run) by typing (ar #) where # is the number

corresponding to the rule or by typing (ar rule-name) where rule-name is the name listed

(the name must match exactly except case is not important). If the rule search command

returns an error, the software engineer probably did not define the current node in the load

file. This can be fixed by setting the current node to any object in the system by typing

(mcn 'object-name) where object-name is the name of a valid object in the object base.

Normally, the application definition, or an object that is part of an application definition, is

the current object. However, if the object base does not contain an application definition,

i.e., no input has been parsed or entered, another object must be set to be the current

node. Possible objects that should exist in the object base include: fatal-error, debug-

on, re::current-grammar (this is a REFINE object so it should always be available, unless

REFINE changes).
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B.3.2 Default Values When the system prompts the application specialist for input,

it might provide a default value. If it exists, the default value will appear in parenthesis

with the prompt. To keep this value, the application specialist simply hits the return key.

If he wants to change this value, he enters the desired value.

B.3.3 Functions Available When the application specialist performs a rule search,

he will be given the following options (not necessarily in this order) to populate and

manipulate an application definition in the object base:

* PARSE-INPUT

* EDIT-AN-OBJECT

* ADD-AN-OBJECT

* DELETE-AN-OBJECT

* LOAD-OBJECT

• ADD-GENERIC-INSTANCE

* COMPLETE-APPLICATION-DEFINITION

* SAVE-OBJECT

* SAVE-APPLICATION

• LOAD-APPLICATION

* ERASE-APPLICATION-DEFINITION

To execute any of these functions, the application specialist applies the corresponding

rule as described in Section B.3.1. The following sections describe each of these functions.

B.3.3.1 Parse Input Input can be parsed into the object base in several ways.

The easiest is to create the file before starting the system. When all the files are loaded,

apply the Parse-Input rule. The system will ask for the name of the file, including the

path. The system makes no assumptions concerning the location of the input, so the

application specialist must enter the name and complete path exactly as he would if trying

to refer to it at the Unix prompt. The path may be relative to the current directory (e.g.,

./input-fileu if the file is in the input-files subdirectory of the current directory)

or it can be an absolute path (e.g., ,-sys-name/domainl/inputs). The case of the path
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names and file names must match exactly with how it appears to the operating system;

the system does no case conversion.

An alternate method of parsing input is to use the emacs editor. The application

specialist can load the file into an emacs window and then use emacs commands to parse a

buffer or parse a region. The final way is to use the REFINE window and directly type the

input. The application specialist can enter (#> followed by the input and ended with a )

and carriage return. Although this is a quick way to define a new application definition,

it is not recommended because it is error-prone and the input is not saved into a file that

can be edited if errors are made.

Once the input has been parsed, the application specialist must tell REFINE to go to

the application definition. This is done using the mcn (make current node) command. After

the input has been parsed, type (mcn 'applic-def-name) where applic-def-name is the

name of the application definition. This should be done before a rule search is performed.

B.3.3.2 Edit An Object Objects already defined as part of an application

definition can be modified without having to change and re-parse the input file. After the

application specialist selects the edit object rule, the system will ask which object is to

be edited (it will give the current object as the default value). It will then list all the

attributes that can be modified, supplying the current value as a default value. If the

attribute is a set or sequence, the interaction will be different. If the set or sequence is

empty, it will ask if he wants to add another element. If the application specialist answers

yes, it will ask for all the appropriate information for an element of that set or sequence.

If the set or sequence already contains elements, the application specialist will have four

options: add elements, delete elements, make the set/sequence empty, or finish editing. If

adding an element to a sequence, the system will display the sequence and ask which index

to use for the new element. This is not done for sets since the order of elements of a set is

not important.

B.S.3.3 Add An Object If the application specialist wants to add an object

instance to the application definition, he can add an object interactively by applying the
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add object rule. The system will ask which application definition the new object should

be part of, the type of object to be added (i.e., the object class name), the name of the

new instance, and all of the attributes associated with objects of the specified class. If

the object class name is not valid, or if the instance name is already used, the system will

display an error message and discontinue this function.

B.3.3.4 Delete An Object The application specialist can remove objects from

application definitions. After the application specialist applies the delete object rule, this

function asks for the name of the object to be removed. It will then verify that the user

really wants to delete the object. If the object is referenced by a subsystem or other

object in the application definition, the application specialist is responsible for making

modifications to the affected objects. If the changes are not made, the application definition

will fail semantic checks.

B.3.3.5 Load Object The application specialist can select the load object rule

to load additional object instances from the technology base into an application definition.

The system will ask for the path name, display the objects available, and ask which one

is to be loaded. It will then ask for an application definition name. If all the input is

valid, it will load the object into the object base and assign it to the specified application

definition.

B.3.3.6 Add Generic Instance Just as generic instances can be specified using

the grammar, they can also be specified interactively by applying the add generic instance

rule. The system prompts the application specialist for path of the generic object, displays

the possible generic objects, asks for the name of the generic to use, asks for the application

definition name, prompts for the name of the new instance to be created, and then asks for

values for each of the parameters. This creates a generic instance, but does not instantiate

it into a new object; this is done as part of the complete application definition function.

B.3.3.7 Complete Application Definition After the application specialist com-

pletes the application definition in the object base, or after he interactively adds a generic

instance, he must then apply the complete application definition rule. Three different
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types of input require further processing before the application definition is ready for fur-

ther processing: load objects, incomplete objects, and generic instances. Load objects

must be physically loaded from the technology base to the object base, incomplete objects

must be completely defined, and generic instances must be instantiated. During this pro-

cess, the system asks for the application name, and then searches for the three types of

objects that require processing. If the system finds an error in one of the objects, it will

give the user the opportunity to edit the object to fix the problem or to remove it from

the application definition.

B.3.3.8 Save Object and Save Application Selecting the save object or save

application option allows the application specialist to save specific object instances or ap-

plication definitions to the technology base. The system will ask which object/application

he wants to save and the path name. The path name specified is appended to the root

directory for all saved objects/applications. If the object/application is to be saved in this

root directory, the application specialist just hits return; if it is to be saved in a subdi-

rectory, he must enter the name of the subdirectory. The system will ask the application

specialist to verify the information before saving.

Saved objects and applications are stored in the exact same state as they exist in

the object base. For example, if the import and export areas of a subsystem have already

been built and the import sources have been identified, this information will be stored. If

this information has not yet been defined, it will not be stored, but it is not an error. The

application specialist may wish to save an application definition after a significant amount

of processing has been done as a backup in case of a system failure.

The system does not have any predefined classification scheme, but objects and ap-

plications can be stored in separate subdirectories like generic objects. The difference

here is that the application specialist is the one putting the objects into these subdirec-

tories. The application specialist must work with the software engineer to establish these

subdirectories before running the system.
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B.3.3.9 Load Application A previously defined application can be reloaded

into the object base. If the application specialist wants to return to an application definition

from a previous session, this is the rule he applies. If the application specialist chooses to

load a new application and one already exists in the object base, the system will print a

message warning the user that he may create an inconsistent state. The system will ask

for a path and display the applications that are available. It will then ask for the name of

the file to be loaded. As with parsing new input files, the application specialist must tell

REFINE to make the new application the current node as described in Section B.3.3.1.

The system can support several application definitions in the object base at one time,

but this is potentially dangerous. If more than one application definition uses the same

name for an object, only one object with that name will exist. The application specialist

may be incorrectly using an object defined for a different application definition. The safest

way to handle this situation is to save the current application definition, erase it, and then

load the second application definition.

B.3.3.10 Erase Application Definition An entire application definition can be

removed from the object base using the erase application definition rule. If the application

definition was saved to a file, the file is not erased. This function is useful if the application

specialist wishes to re-parse the input file or wants to load a new application definition.

B.4 Hints on Building Application Definitions

The application specialist has a lot of flexibility when creating application specifica-

tions. Some techniques work better in certain situations. It will take some experience with

the system to figure out the best means of accomplishing different tasks.

B.4.1 Modifying the Object Base The current interface can be cumbersome to use

at times, especially if the input requires substantial changes. If many changes are required,

it may be easier for the application specialist to erase the application definition, fix the

input fie, and re-parse the input into the data base. If many changes have been made to
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the import and export areas, it may be easier to edit interactively and then, during the

semantic check, make the necessary changes to the affected import sources.

B.4.2 Creating New Application Definitions The application specialist can take

several different approaches to building application definitions. Each new definition can

be started from scratch and, until a new domain's technology base is established, this will

be the only approach. If the software engineer has developed generic objects, or if objects

have already been saved to the technology base, they can be used as high-level components.

B.4.2.1 Using Existing Objects in a New Application Definition If the appli-

cation specialist wants to reuse parts of previous application definitions he can either copy

the input from the file into a new file and the fill in any additional objects, or he can save

the objects from the object base to the technology base and then use those exact objects

again. The main difference in the two approaches is that the objects that are saved to

the technology base might (depending on when they were saved) have some of the inter-

connections (the sources for the import objects) already defined. This information can be

especially useful for a large subsystem.

When building the new application definition from existing objects in the technology

base, the application speciali-st may elect to keep some of the defined connections; he only

needs to make changes to connect the object to other objects in the application. However,

if a subsystem is saved and then used in another application definition, it may still reference

external sources for its imports. When the application specialist performs semantic checks,

he will be asked if he wants to change the source for imports that already have sources.

If the source is no longer defined in the application object, the application specialist must

redefine the source. If this is not done, the execution will not run properly.

B.4.2.2 Building Up Components It is possible to slowly build up higher and

higher level domain components. For example, a generic half-adder exists for the validating

domain. A full adder can be built using two instances of the generic half-adder along with

the appropriate interconnections. The full adder subsystem can be saved to the technology

base for future use. If a full adder is needed for an application, all the required objects that
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comprise the full adder can be loaded (using the grammar). The disadvantage of using

existing objects (versus a generic or a copying input from another file) is that only one

copy of each can be used per application definition.
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Appenldix C. Validating Domain Code

!!in-package("RU")
11 in-grammax(' syntax)

#11
File name: gram-logic.re

Description: Grammar for the logic circuit domain (the validating domain)

Rules:
lone

Functions:
None

I 1*

grammar Circuits

no-patterns

inherits-from OCLI

start-classes Spec-Obj, subsystem-obj, incomplete-obj, Generic-Obj,
And-Gate-Obj, Or-Gate-Obj * Nand-Gat e-Dbj, Nor-Gate-Obi, lot-Gate-Obj,
Switch-Obj, LED-Obj, JK-Flip-FLop-Obj

file-classes Spec-Obj, subsystem-obj, incomplete-obj, Generic-Obj,
And-Gate-Obj, Or-Gate-Obj, Nand-Gate-Obj, lor-Gate-Obj, Not-Gate-obj,
Svitch-Obj, LED-Obj, JK-Flip-FLop-Obj

productions

And-Gate-Obj ::["and-gate" name
{ [delay:" and-gate-obj -delay)
[(P"is mil-spec" 1! and-gate-obj-mil-spec?) I

["not mil-spec" -!! and-gate-obj-mil-spec?])])
("manufacturer:*' and-gate-obj-manufacturerJ
["Power level:"6 and-gate-obj-power-lovelJ ) I

builds And-Gate-Obj,

Or-Gate-Obj ["or-gate" name
{ "delay:" or-gate-obi -delay)

((["is ail-spec" 11 or-gate-obj-mil-spec?) I
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["not mil-spec" -!! or-gate-obj-mil-spec?))]
["manufacturer:" or-gate-obj-manufacturer)
["Power level:" or-gate-obj-power-level] I I

builds Or-Gate-Obj,

Nand-Gate-Obj :=["nand-gat e" name
{ ["delay:" nand-gate-obj -delay]

[C [is nil-spec" !! nand-gate-obj-mil-spec?) I
["not nil-spec" -!! nand-gate-obj-mil-spec?]))

["manufacturer:" nand-gat e-obj -manufacturer)
["Power level:" nand-gate-obj-power-level) I I

builds Iand-Gate-Obj,

Nor-Gate-Obj ::["nor-gate" name
(["delay:" nor-gate-obj-delayJ

[(["nil-spec" H nor-gate-obj-nil-spec?) I
["not nil-spec" -!! nor-gate-obj-nil-spec?] )J

["manufacturer:" nor-gate-obi -manufacturer)
["Power level:" nor-gate-obj-power-level) I I

builds Ior-Gate-Obj,

Not-Gate-Obj : ["not-gate" name
{ ["delay:" not-gate-obi -delay]
[(P"is nil-spec" !! not-gate-obj-mil-spec?) I

["not nil-spec" -!! not-gate-obj-mil-specJ))
("manufacturer:" not-gate-obi -manu~facturer)
("Power level:" not-gate-obj-power-levelJ I I

builds Not-Gate-Obj,

JK-Flip-FLop-Obj : =[jk-flip-flop" name
{ ["delay:" jk-flip-flop-obj -delay]

[(["is nil-spec" !! jk-flip-flop-obj-nil-spec?)
["not nil-spec" -!! jk-flip-flop-obj-nil-spec?])])

["manufacturer:" jk-flip-Ilop-obj -manufacturer)
["Power level:" jk-flip-flop-obj -power-level)
["set-up delay:" jk-flip-flop-obj -set-up-delay)
["hold delay:" jk-flip-flop-obj-hold-delay)
[(["state on" !! jk-flip-flop-obj-stateJ I

["state off" ''!jk-flip-flop-obj-state)) I ) I
builds JK-FLip-FLop-Obj,

Switch-Obj : =["switch" name
{["delay:" switch-obj-delayJ
[("is, debounced" 11 switch-obj-debouncedJ

["not debounced" -! switch-obj-debouncedl)])
["manufacturer:" switch-obj-nanufacturerJ
["position:" switch-obj-position] I I

builds Switch-Obj,

LED-Obj P =(led" name
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{ ["manufacturer:" led-obj-manufacturer]
["color:" led-obj-color) } I builds LED-Obj

symbol-start-chars
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ./1*"

symbol-continue-chars
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ-O 123456789./*?,'

comments "'T." matching

precedence

for expression brackets "(" matching ")"

(same-level "and", "or" associativity left),
(same-level "<", "<=", "", ">=", ">", "/=" associativity none),
(same-level "+","-" associativity left),
(same-level "*", " m", "mod" associativity left),
(same-level "not" associativity none),
(same-level "abs" associativity none),
(same-level "**" associativity right)

end
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i n-pac~kageO("RU')

in-grammar( 'user)

Us File name: and-gate.re

var AID-GATE-OBJ :object-class subtype-of Primitive-Obj

var ANrD-GATE-OBJ-INPUT-DATA :set Cimport-obj)=
{set-attrs (make-obj ect( 'import-obj),

'imprt-ame 'ln,
'import-category, 'signal,
'import-type-data, 'boolean),

set-attrs (make-object C iinport-obj),
'import-name, 'in2,
'import-category, 'signal,
'import-type-data, 'boolean) }

var AND-GATE-OBJ-OUTPUT-DATA : set (export-obj)
{set-attrs (make-obj Oct C export-obj),

'export-name, 'outi,
'export-category, 'signal,
'export-type-data, 'boolean) }

var AND-GATE-OBJ-CaEFFICIKNrS -. ma~p(LUD-GLTh-QBJ, set (name-value-obj))
computed-using

AUD-GATE-OBJ-COEFFICIENTS(x) {

var AJD-GATE-OBJ-UPDATE-FUICTION : map(AND-GATE-OBJ. symbol)
computed-using

AID-GATE-OBJ-TJPDATE-FUICTIOI (x) = 'AID-GATB-OBJ-UPDATE

% Other Attributes:
var AID-GATE-OBJ-DELAY : map(AID-GATE-OBJ, integer)

computed-using
AND-GATE-OBJ-DELAY(x) = 0

var AI[D-GITE-O~i-InMJFACTURU : map(AIID-GATE-OBJ, string)
computed-using

AJID-GATE-03J-NANUFACTURER(x) 'a

var AND-GATE-OD3-JIIL-SPEC? : IpAD-GTE-BJ boolean)
computed-using

LND-GATE-OUJ-KIL-SPEC? (x) =nil

var ANFD-GATE-OUJ-POVUR-LEVEL : ap(AI[D-GATE-ODJ, real)
coompted-using

AND-GATE-O33-POVER-LEVIL(x) - 0.0
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form Make-AID-GATE-Iames-Unique
unique-names-class C'AND-GATE-OBJ, true)

function AID-GATE-OBJ-UPDATE (subsystem subsystem-obj.
and-gate AID-GATE-OBJ)

format (debug-on, "AID-GATE-OBJ-UPDATE on -s-%", name (and-gate));

let (inI boolean = get-importC'ini, subsystem, and-gate),
in2 boolean = get-import('in2, subsystem, and-gate))

bet-export(subsystem, and-gate, 'outi, iul in2)

function AID-GATE-OBJ-NEE-UPDATE (subsystem subsystem-obj,
and-gate AND-GATE-aLT)

format(t, "AND-GATE-OBJ-IEW-UPDATE on -s%", name(and-gate))
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'Iin-package("RU")

Hin-grammar('user)

U% File name: ol--gate.re

var OR-GATE-OBJ :object-class subtype-of Primitive-Obj

var OR-GATE-OBJ-INPUT-DATA :set(import-obj)
{set-attrs Cmake-obj ect C import-obj),

'impr-ae 'mI,
'import-category, 'signal,
'import-type-data, 'boolean),

set-attrs (make-objectC'import-obj),
'import-name, 'in2,
'import-category, 'signal.,
'import-type-data, 'boolean) }

var OR-GATE-OBJ-OUTPUT-DATA : set~export-obj)
{set-attrs (make-object( 'export-obj),

'export-name, 'outi,
'export-category, 'signal,
'export-type-data, 'boolean) }

var 0R-GATE-OBJ-COEFFICIEUTS i ap(OPR-GkTE-OBl, set (name-value-obj))
computed-using

OR-GATE-OBJ-COEFFICIENTS(x) ={

var OR-GATE-OBJ-UPDATE-FUNCTIOI : map(DR-GATE-OBJ, symbol)
computed-usning

OR-GATE-OBJ-UPDATE-FUNCTION(x) = 'OR-GATE-OBJ-UPDATE

% Other Attributes:
var OR-GATE-OBJ-DELAY : map(OR-GATE-OBJ, integer)

computed-using
OR-GATE-OBJ-DELAY(x) = 0

var OR-GATE-OBJ-KAIUFACTUBER : map COR-GATE-OBJ, string)
computed-using

OR-GATE-OBi-KANUFACTURER(x)=

var OR-GATE-OBJ-KIL-SPEC? : nap(OR-GATE-OBJ, boolean)
computed-using

OR-GATE-OBJ-KIL-SPEC?(x) =nil

var 0ft-GATE-0BJ-POWUR-LEVEL xap(0R-GATE-OB3, real)
computed-using

OR-GATE-OBJ-POVER-LEVEL(x) = 0.0
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form Nake-OR-GATE-Names-Unique
unique-names-class(C OR-GATE-OBJ, true)

function OR-GATE-OBJ-UPDATE (subsystem subsystem-obj,
or-gate OR-GATE-OBJ) =

format Cdebug-on, "OR-GATE-OBJ-UPDATE on -s-%, name~or-gate));

let Cmni boolean = get-importC'inI, subsystem, or-gate),
in2 boolean = get-importC'in2, subsystem, or-gate))

set-export~subsystem, or-gate, 'outi, Cmin or in2))

function OR-GATE-OBJ-NEW-UPDATE (subsystem subsystem-obj,
or-gate OR-GATE-OBJ) =

format(t, 'OR-GATE-OBJ-NIEW-UPDATE on -s-%", name~or-gate))
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" in-package("RU")
"H in-grammar('user)

*/X/ File name: nand-gate.re

var IAND-GATE-OBJ :object-class subtype-of Primitive-Obj

var NAND-GATE-OBJ-INPUT-DATA :set(import-obj)
{set-attrs (make-object( 'import-obj),

'import-name, 'ln,
'impotctgr, 'signal,
'import-type-data, 'boolean),

set-attrs Cmake-obj ect C import-obj),
'imot-ae 'in2,
'import-category, 'signal,
'import-type-data, 'boolean)}

var IAND-GATE-OBJ-DUTPUT-DATA : set(export-obj)
{set-attrs Cmake-object( 'export-obj),

'export-name, 'outi,
'export-category, 'signal,
'export-type-data, 'boolean)}

var NAID-GkTE-OB 3-COEFFICIENTS : ap(UIkD-GkTE-OBJ, set (name-value-obj))
computed-using

NAND-GATE-OBJ-COEFFICIENTS(x) ={

var NAND-GATE-OBJ-UPDATE-FUNCTIOI : map(IAND-GATE-OBJ, symbol)
complit ed-using

IAID-GATE-OBJ-UPDATE-FUICTION Cx) = 'lAID-GATE-OB 3-UPDATE

% Other Attributes:
var IAND-GATE-OBJ-DELAY : map(IAID-GATE-OBJ, integer)

computed-using
NAID-GATE-OBJ-DELAY~x) =0

var IAID-GATE-ODJ-MANUFACTURER : map(IAlD-GATE-OBJ, string)
computed-using

IAND-GATE-OBJ-KANUFACTURER(x)=

var NAND-GATE-OB3-UIL-SPEC? : map CIAID-GATE-OBJ, boolean)
computed-using

WAND-GATE-OBJ-XIL-SPEC? Cx) =nil

var IAID-GATE-OBJ-POWER-LEVEL : ap(lAND-GATE-OBJ, real)
computed-using

NAND-GATE-ODJ-POWER-LEVEL(x) = 0.0
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form Make-IAND-GATE-Naznes-Unique
unique-names-class(C NAND-GATE-OBJ, true)

function IAND-GATE-OBJ-UPDATE (subsystem subsystem-obj,
nand-gate NAID-GATE-OBJ)

format (debug-on, "IAND-GATE-OBJ-UPDATE on -s-%, nazne~nand-gate));

let (int boolean = get-importC'int, subsystem, nand-gate),
in2 boolean = get-importC'in2, subsystem, nand-gate))

set-export~subsystem, nand-gate, 'outi, C(inl & in2))

function NAND-GATE-OBJ-IEW-UPDATE (subsystem subsystem-obj,
nand-gate lAND-GATE-OLD =

format Ct, "NANFD-GATE-OBJ-IFEW-UPDATE on -s-%", name (nand-gate))
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H in-package ("RU")
!! in-grammarC'user)

U% File name: nor-gate.re

var IOR-GATE-OBJ object-class subtype-of Primitive-Obj

var NOR-GATE-OBJ-INPUT-DATA : set (import-obj)=
{set-attrs Cmake-obj ect ( import-obj),

'import-name, 'mni,
'import-category, 'signal,
'import-type-data, 'boolean),

set-attrs Cmake-obj oct C import-obj),
'import-name, 'in2,

'imortcatgor, 'signal,

'import-type-data, 'boolean)}

var IOR-GATE-OB I-OUTPUT-DATA : set (export-obj)=
{set-attrs (make-object C export-obj),

'export-name, 'outI,
'export-category, 'signal,
'export-type-data, 'boolean)}

var IOR-GhTE-OBJ-COEFFICIUTS -map(IOR-GkTE-OEBJ, set(name-value-obj))
computed-using

1C3R-GATE-OBJ-COEFFICIEITS Cx) ={

var IOR-GATE-OBJ-UPDATE-FUICTION :mapCNOR-GATE-OBJ, symbol)
computed-using

NOR-GATE-OBJ-UPDATE-FUNCTION Cx) = 'NOR-GATE-OBJ-UPDATE

% Other Attributes:
var IOR-GATE-OBJ-DELAY : mapCIOR-GATE-OBJ, integer)

computed-using
NOR-GATE-OBJ-DELAY(x) = 0

var IOR-GATE-OBJ-KANUFACTURER :map(IOR-GATE-OBJ, string)
computed-using

ROR-GATE-OBJ-NANIJFACTURER(x) "

var NOR-GATE-OBJ-MIL-SPEC? : map(NOR-GATE-OBJ, boolean)
computed-us ing

IOR-GATE-ODJ-HIL-SPEC? (x) =nil

var IOR-GATE-OBJ-POWER-LEVEL :map(IOR-GATE-OBJ, real)
computed-using

IOR-GATE-OBJ-POWER-LEVEL(x) = 0.0
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form Make-NOR-GATE-Iames-Unique
unique-names-class( 'NOR-GATE-OBJ, true)

function NOR-GATE-OBJ-UPDATE (subsystem subsystem-obj,
nor-gate NOR-GATE-OBJ)

format~debug-on, "IOR-GATE-OBJ-UPDATE on -s-%,. name~nor-gate));

let (ini boolean = get-import('iul, subsystem, nor-gate),
in2 boolean = get-importC'in2, subsystem, nor-gate))

set-export~subsystem, nor-gate, 'outi, -(ini or in2))

function IOR-GATE-OBJ-NEW-UPDATE (subsystem :subsysteui-obj,
nor-gate :NOR-GATE-OBJ)=

format Ct, "NOR-GATE-0BJ-IEW-UPDATE on - s-%"S, name (nor-gate))
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H in-package("RU")
!!in-grammax( 'user)

'/.% File name: jk-flip-flop.re

var JK-FLIP-FLOP-OBJ -object-class subtype-of Primitive-Obj

var JK-FLIP-FLOP-OBJ-IIPUT-DATA :set(import-obj)
{set-attrs (make-objectC'import-obj),

'import-name, '3,
'imortcatgor, 'signal,

'import-type-data, 'boolean),
set-attrs Cmake-obj ect C import-obj),

'import-name, 'K,
'import-category, 'signal,
'import-type-data, 'boolean),

set-attrs (make-objectC'iuport-obj),
'imot-ae 'CU,
'import-category, 'signal,
'import-type-data, 'boolean)}

var JK-FLIP-FLOP-OBJ-OUTPUT-DATA : set (export-obj)
{set-attrs (make-obj ect( 'export-obj),

'export-name, 'Q.
'export-category, 'signal,
'export-type-data, 'boolean),

set-attrs (make-object C export-obj),
'export-name, IQ-Bar,
'export-category, 'signal,
'export-type-data, 'boolean)}

var JK-FLIP-FLOP-OBJ-COEFFICIEM S : mapCJK-FLIP-FLOP-OBJ, set(name-value-obj))
computed-using

JK-FLIP-FLOP-OBJ-COEFFICIEITS(x) ={

var JK-FLIP-FLOP-OBJ-UPDATE-FUICTIOI : mapC(JK-FLIP-FLOP-OBJ, symbol)
computed-using

JK-FLIP-FLOP-OBJ-UPDATE-FUICTION Cx) = IJK-FLIP-FLOP-OB 3-UPDATE

% Other Attributes:
var JK-FLIP-FLOP-OBJ-DELAY : map (JK-FLIP-FLOP-OBJ, integer)

computed-using
JK-FLIP-FLOP-OBJ-DELkY(x) = 0

var JK-FLIP-FLOP-OBJ-NAIUFACTURER : map (JK-FLIP-FLOP-OBJ, string)
computed-using

JK-PLIP-FLOP-OE3-NAIWFACTIUflU(x) "

var JK-FLIP-FLOP-OBJ-NIL-SPEC? : map (JK-FLIP-FLOP-OBJ, boolean)

C-12



computed-using
JK-FLIP-FLOP-OBJ-MIL-SPEC? Cx) =nil

var JK-FLIP-FLOP-OBJ-POWER-LEVEL map (JK-FLIP-FLOP-OBJ, real)
computed-using
JK-FLIP-FLOP-OBJ-POWER-LEVEL(x) =0.0

var JK-FLIP-FLOP-OBJ-SET-UP-DELAY mapC(JK-FLIP-FLOP-DBJ, integer)
computed-usinug
JK-FLIP-FLOP-OBJ-SET-UP-DELAY Cx) =0

var JK-FLIP-FLOP-OBJ-EOLD-DELAY :mapC(JK-FLIP-FLOP-OBJ, real)
computed-using
JK-FLIP-FLOP-OBJ-HOLD-DELAY(x) = 0.0

var JK-FLIP-FLOP-OBJ-STATE :map (JK-FLIP-FLOP-OBJ, boolean)
computed-using

JK-FLIP-FLOP-OBJ-STATE(x) = nil

form Make-JK-FLIP-FLOP-Iaznes-Unique
unique-names-class C' K-FLIP-FLOP-OBJ, true)

function JK-FLIP-FLaP-OBJ-UPDATE (subsystem subsystem-obj,
jk-flip-flop JK-FLIP-FLDP-OBJ)

format~debug-on, 'JK-FLIP-FLOP-OBJ-UPDATE on -s%", namne jk-f lip-flop))

let Cj boolean = get-import('J, subsystem, jk-flip-flop),
k boolean = get-importC'K, subsystem, jk-flip-Ilop),
clk boolean = get-importC'Clk, subsystem, jk-flip-flop))

(it -j k k k clk then
JK-FLIP-FLOP-OBJ-STATE~jk-flip-flop) <- nil

elseif j k k k clk then
JK-FLIP-FLOP-OBJ-STATE(jk-f lip-flop) <- - JK-FLIP-FLOP-OBJ-STATEC jk-f lip-flop)

elseif j k -k and clk then
JK-FLIP-FLOP-OBJ-STATE(jk-flip-flop) <- true

set-export(subsyaten, jk-flip-Ilop, 'Q, .IK-FLIP-FLOP-0BJ-STATE(jk-f lip-flop));
set-export (subsystem * jk-flip-f lop, 'Q-Bar,

- JK-FLIP-FLOP-OBJ-STATE( jk-f lip-flop))
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function JK-FLIP-FLOP-OBJ-NEW-UPDATE (subsystem subsystem-obj,
jk-flip-flop JK-FLIP-FLOP-OBJ)

formatt, 'JK-FLIP-FLOP-OBJ-NEW--UPDATE on - s-%" name (jk-f lip-f lop))
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Iin-package("RU")
I!in-grammar('user)

Y.File name: not-gate.re

var NOT-GATE-OBJ : object-class subtype-of Primitive-Obj

var IOT-GATE-OBJ-INPUT--DATA: set Cimport-obj)
{set-attrs Cmake-object( 'import-obj),

'import-name, 'int,
'import-category, 'signal,
'import-type-data, 'boolean)}

vax NOT-GATE-OBJ-OUTPUT-DATA : set Cexport-obj)
{set-attrs (make-obj ect C export-obj),

'export-name, 'out 1,
'export-category, 'signal,
'export-type-data, 'boolean)}

var NOT-GATE-OBJ-COEFFICIENTS : map(IOT-GATE-OBJ, set (name-value-obj))
computed-using

NOT-GATE-OBJ-COEFFICIEWTS(x) ={

var IOT-GATE-OB-UPUhTE-FUNCTIOI map(NOT-GATE-OBJ, symbol)
computed-using

NOT-GATE-OBJ-UPDATE-FUICTIOI(x) = 'IOT-GATE-OBJ-UPDATE

%. Other Attributes:
var NOT-GATE-OBJ-DELAY :map(NOT-GATE-OBJ, integer)

computed-using
NOT-GATE-OBJ-DELAY(x) = 0

var NOT-GATE-OBJ-NANtJFACTURER : map(NOT-GATE-OBJ, string)
computed-using

NOT-GATE-OBJ-NANUFACTURER(x)

var NOT-GATE-OBJ-NIL-SPEC? : map(IOT-GATE-OBJ, boolean)
computed-using

NOT-GATE-OBJ-KIL-SPEC? (x) =nil

var NOT-GATE-OBJ-POWER-LEVEL :map(IDT-CATE-OBJ, real)
computed-using

IOT-GATE-OBJ-POWER-LEVEL(x) = 0.0

form Make-NOT-GATE-Iames-Unique
unique-names-claus ('IOT-GATE-OBJ, true)
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function NOT-GATE-OBJ-UPDATE (subsystem subsystem-obj,
not-gate NOT-GATE-OBJ)

format (debug-on, INOT-GATE-OBJ-UPDATE on -a-%", name (not-gate));

let Cmi boolean =get-importC'ini, subsystem, not-gate))

set-export~subsystem, not-gate, 'outi, -(ini))

function NOT-GATE-OBJ-NEW-UPDATE (subsystem subsystem-obj,
not-gate NOT-GATE-OBJ)=

format(t, "NOT-GATE-OBJ-IEW-UPDATE on -s-%", name (not-gate))
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1! in-packagaC'RU")
!! in-grammarC'user)

U% File name: led.re

var LED-OBJ :object-class subtype-of Primitivte-Obj

var LED-OBJ-IIPUT-DATA :set(import-obj) =
{set-attrs (make-object('import-obj),

'import-name, 'ln,
'import-category, 'signal,
'import-type-data, 'boolean)}

var LED-OBJ-OUTPUT-DATA set(export-obj) = *}

var LED-OBJ-COEFFICIEITS :map(LED-OBJ, set~name-value-obj))
computed-using

LED-OBJ-COEFFICIENTS(x) ={

var LED-OBJ-UPDATE-FUNCTION : map CLED-OBJ, symbol)
computed-using

LED-OBJ-UPDATE-FUNCTIOI Cx) = 'LED-OBJ-UPDATE

%. Other Attributes:
var LED-OBJ-HAETJFACTURER : nap(LED-OBJ, string)

computed-using
LED-OBJ-N&NUFACTURER(x) =11O

var LED-OBJ-COLOR : map(LED-OBJ, symbol)
computed-using

LED-OBJ-COLORWx = 'red

form Hake-LED-Names-Unique
unique-names-class(C LED-OBJ, true)

function LED-ODJ-UPDATE (subsystem subsystem-obj,
led LED-aBJ) =

format~t, "LED-aDJ-UPDATE on sa%". name~led));

let (display-value : symbol ='false)

(if get-import('inl, subsystem, led) then
display-value <- 'true

format(t, "LED -a seX", name~led), display-value)
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function LED-OBJ-IEW-UPDATE (subsystem subsystem-obj,
led LED-OBJ) =

format Ct, 'LED-OBJ-IEW-UPDATE on -s-%, name(led))
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1!in-'package ( "U")
!! in-grammar C user)

UV File name: switch.re

var SWITCH-OBJ : object-class subtype-of Primitive-Obj

var SWITCH-OBJ-IIPUT-DATA set Cimport-obj) = {

var SWITCI-OBJ-OUTPUT-DATA set (export-obj) =
{set-attrs (make-object( 'export-obj),

'export-name, 'out i,
'export-category, 'signal,
'export-type-data, 'boolean) }

var SWITCH-OBJ-COEFFICIENTS: map(SWITCH-OBJ. set (name-value-obj))
computed-using

SWITCH-OBJ-COEFFICIENTS(x) ={

var SWITCH-DB3-UPDATE-FUICTION map(SWITCH-OBJ, symbol)
computed-using

SWITCH-OBJ-UPDATE-FUICTIOI Cx) = 'SWITCH-OBJ-UPDATE

% Other Attributes:
var SWITCH-OBJ-AKNUFACTURER :map(SWITCI-OB3, string)

computed-using
SVITCH-OBJ-NANUFACTURER(x) = tol

var SWITCH-OBJ-DEBOUICED :map(SWITCH-OBJ, boolean)
computed-using
SWITCH-OBJ-DEBOUNCED(x) = nil

var SVITCH-OBJ-DELAY :map(SWITCI-OBJ, integer)
computed-using
SWITCH-OBJ-DELAY(x) = 0

var SUITCH-OBJ-POSITIOI : ap(SVITCH-OBJ, symbol)
computed-using

SUITCH-OBJ-POSITION(x) = 'on

form Make-SWITCH-Names-Unique
unique-names-class( 'SWITCI-OBJ, true)

function SWITCH-ODJ-UPDATE (subsystem : subsystemý-obj.
switch :SWITCH-OBJ) =

format (debug-on, "SVITCH-GATE-OL'I-UPDATE on -a%". name (switch));
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let (signal :boolean = false)

(it SWITCH-OBJ-POSITIOI(svitch) = 'O1 then
signal <- true

format(t. "Sic position = -s-V. SWITCH-DBJ-PDSITIOI~switch));

set-export~subsystem, switch, 'outI, signal)

function SWITCH-OBJ-NEW-UPDATE (subsystemi subsystem-obj,
switch SWITCH-OB3) =

format Ct, "SWITCH-0BJ-NEW-UPDATE on -a-%1", name (switch))
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Appendix D. Sample Session

This appendix shows several sample sessions to demonstrate how this portion of the

system works. First, we built a universal left-right presettable shift register and then a

binary array multiplier. Most of the functions available to the application specialist are

demonstrated in these two sessions, the ones not shown are obvious as to their functions.

Several comments were added to the session outputs to indicate the action being taken,

these comments will be inclosed between "(*" and "*)" so that they will not be confused

with normal input and output.

D.1 Universal Shift Register

We built a universal left-right presettable shift register shown in Figure D.1 in two

steps: we built a subsystem that defines the shift register, saved it, and then used that

shift register subsystem as part of another application.

0 a a
AK JK2 AK AK Clear

K' J Kj A K i A Ka .i

Figure D.1. Universal Shift Register

The code for building the subsystem was as follows:

application definition lr-shr-applic
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jk-flip-flop jkl state off
jk-flip-flop jk2 state off
jk-flip-flop jk3 state off
jk-flip-flop jk4 state off

% use nots to make jk flip flop simulate a D flip flop
not-gate notjI
not-gate notj2
not-gate notj3
not-gate notj4

mux mux1
mux mux2
mux mux3
mzii mux4

switch clock position: on
switch load-switch position: on
switch lr-bar position: on %. when on, shifts left
switch clear position: off

switch left-in position: off
switch right-in position:on

switch DIO position: on
switch DII position: off
switch D12 position: on
switch D13 position: off

led DOO
led DO1

led D02
led D03

subsystem lr-shift-reg is
controls: jkl, notjI, jk2, notj2, jk3, notj3, jk4, notj4,

muxI, mux2, mux3, mux4
update procedure:
update muxI
update mux2
update m-ux3
update mux4

update notjl
update jkl
update notj2
update jk2
update notj3
update jk3
update notj4
update jk4
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subsystem drive-shift is
controls: lr-shift-reg, clock, load-switch, lr-bar, clear, left-in, right-in,

DIO, DII, D12, D13, D03, D02, DOI, DOO
update procedure:
update clear

update clock

update load-switch

update lr-bar

update left-in
update right-in
update D13
update D12
update DI1
update DIO
update lr-shift-reg
update D03
update D02
update DOI

update DOO

application do-shift is
controls: drive-shift

update procedure:
update drive-shift

Although the additional subsystem, inputs (switches), and outputs (leds) are not

necessarily required, they were used to test the subsystem and define the sources for the

imports before it was saved. The session used to build and save the subsystem appears

belos (user inputs follows the REFINE prompt .>):

(* the current node was set to the variable FATAL-ERROR since no input

has been parsed *)
.> Cr5)
- Rules for: ##r USER var FATAL-ERROR: boolean = false -

1) ERASE-APPLICATION-DEFINITION
2) EDIT-AN-OBJECT
3) ADD-AN-OBJECT
4) DELETE-AN-OBJECT
5) SAVE-OBJECT
6) SAVE-APPLICATION
7) LOAD-OBJECT
8) LOAD-APPLICATIOI
9) PARSE-INPUT
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10) ADD-GENERIC-INSTANCE
11) BUILD-GENERIC
12) SAVE-GENERIC
13) COMPLETE-APPLICATION-DEFINITION
15) CHECK-SEMANTICS
.> (ar 9) (* parse in the input file *)
Enter the full name of the file: ./DSL/tests/demo2
##r USER var FATAL-ERROR: boolean = false
.> (mcn 'lr-shr-applic)
application definition LR-SHR-APPLIC

JKi JK2 JK3 JK4 NOTJ1 NOTJ2 NOTJ3 NOTJ4 NUX1 MUX2 MUX3 MUX4
CLOCK LOAD-SWITCH LR-BAR CLEAR LEFT-IN RIGHT-IN DIO DI1 D12
D13 DOO DOI D02 DO3 LR-SHIFT-REG DRIVE-SHIFT DO-SHIFT

.> (rs)
- Rules for: application definition LR-SHR-APPLIC

JK1 JK2 JK3 JK4 NOTJi NOTJ2 NOTJ3 NOTJ4 MUXI MUX2 MUX3 NUX4
CLOCK LOAD-SWITCH LR-BAR CLEAR LEFT-IN RIGHT-IN DIO DII D12
D13 DOO DOI D02 DO3 LR-SHIFT-REG DRIVE-SHIFT DO-SHIFT -

1) ERASE-APPLICATION-DEFINITION
2) EDIT-AN-OBJECT
3) ADD-AN-OBJECT
4) DELETE-AN-OBJECT
5) SAVE-OBJECT
6) SAVE-APPLICATION
7) LOAD-OBJECT
8) LOAD-LPPLICATIOU
9) PARSE-INPUT
10) ADD-GENERIC-INSTANCE
11) BUILD-GENERIC
12) SAVE-GENERIC
13) COMPLETE-APPLICATION-DEFINITION
15) CHECK-SEMANTICS
.> (ar 15) (* check the semantics and determine the sources for imports *)

More than one export can provide the data for S1
which is used by object NUX4

in subsystem LR-SHIFT-REG
Choose the export item (subsystem and component)

that you wish to be the source of this data:
1> subsystem "LR-SHIFT-REG" component "JKI" name "Q"
2> subsystem "LR-SHIFT-REG" component "JKI" name "Q-BAR"

Enter the number corresponding to the source you want to use

(* defined all of the import sources (i.e., interconnections) *)
(* execute to test behavior *)

.> 5)
Enter object to save: (LR-SHR-APPLIC): lr-shift-reg
Enter the path (include last /)./objs/: univ-shr/
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Do you really want to save ./objs/UNIV-SHR/LR-SHIFT-REG-SAVED? (y or n) y

DO you want to save the objects it controls also? (y or n) y
saves all of the objects controlled by the subsystem with the subsystem
so they do not have to be loaded separately when it is used in a new
application definition *)

Rule successfully applied.
application definition LR-SHR-APPLIC

JK1 JK2 JK3 JK4 NOTJ1 NOTJ2 NOTJ3 NOTJ4MUXI MUX2 MUX3 N4U4
CLOCK LOAD-SWITCH LR-BAR CLEAR LEFT-IN RIGHT-IN DIO DII D12
D13 DOO DOI D02 DO3 LR-SHIFT-REG DRIVE-SHIFT DO-SHIFT

Now that we have the shift register saved, it can be used in the following application

definition. Note that the objects used within the shift register are not redefined in this

application definition; they are instead stored with the shift register. This demonstrates

how a subsystem that was built as part of one application definition can be used in another.

application definition demo

object switch-obj, clock

switch load-switch position: on
switch lr-bar position: off % when on, shifts left
switch clear position: off
switch left-in position: off
switch right-in position:on

switch DIO position: on
switch DII position: off
switch D12 position: on
switch D13 position: off

led DOO
led DO1
led D02
led D03

load univ-shr/lr-shift-reg

subsystem drive-shift is
controls: Ir-shift-reg, clock, load-switch, lr-bar, clear, left-in, right-in,

DIO, DII, D12, D13, D03, D02, DOI, DOO
update procedure:
% first load the input into the register
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setstate load-switch (position, on)
setstate ir-bar (position, off)

update clear
update clock
update load-switch
update ir-bar

update left-in
update right-in
update D13
update D12
update DI1
update DIO
update lr-shift-reg
update D03
update D02
update DOI
update DOO

% now shift right - using original input still
setstate load-switch (position, off)
setstate lr-bar (position, off)
update load-switch
update lr-bar

update ir-shift-reg
update D03
update D02
update DOI
update DOO

update lr-shift-reg
update D03
update D02
update DO0
update DOO

update lr-shift-reg
update D03
update D02
update DOI
update DOO

update lr-shift-reg
update D03
update D02
update DOI
update DOO

% clear out the old stuff
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setstate load-switch (position, on)
setstate lr-bar (position, off)
update clear
update clock
update load-switch
update ir-bar
update left-in
update right-in
update D13
update D12
update DII
update DIO
update lr-shift-reg
update D03
update D02
update DOI
update DOO

now shift left - using original input
setstate load-switch (position, off)
setstate lr-bar (position, on)
update load-switch
update lr-bar

update D13
update D12
update DII
update DIO
update lr-shift-reg
update D03
update D02
update DO0
update DOO

update lr-shift-reg
update D03
update D02
update DOI
update DOO

update lr-shift-reg
update D03
update D02
update DOI
update DOO

update lr-shift-reg

update D03
update D02
update DO0
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update DOO

application do-shift is
controls: drive-shift

update procedure:
update drive-shift

The following shows how this application was parsed into the object base, completely

defined, and then modified. It demonstrates more of the obect base manipulation functions

available to the user.

.> Cr.)
- Rules for: flr USER var FATAL-ERROR: boolean = false -

1) ERASE-APPLICATION-DEFINITION
2) EDIT-AN-OBJECT
3) ADD-AN-OBJECT
4) DELETE-AN-OBJECT
5) SAVE-OBJECT
6) SAVE-APPLICATION
7) LOAD-OBJECT
8) LOAD-APPLICATION
9) PARSE-INPUT
10) ADD-GENERIC-INSTANCE
11) BUILD-GENERIC
12) SAVE-GENERIC
13) COMPLETE-APPLICATION-DEFINITION
16) CHECK-SEMANTICS
.> (ar 9) (* parse in the input file *)
Enter the full name of the file: ./DSL/tests/demo

Rule successfully applied.
*Sr USER var FATAL-ERROR: boolean = false

.> (mcn 'demo)
application definition DEMO

CLOCK LOAD-SWITCH LR-BAR CLEAR LEFT-IN RIGHT-IN DIO DI1 D12
D13 DOO DOI D02 D03 load UNIV-SHR/LR-SHIFT-REG DRIVE-SHIFT
DO-SHIFT

.> (ar 13) C* the clock object is not fully defined,
it is an incomplete object *)

Enter the application name: (DEMO):
completing an incomplete object
Complete the information for object CLOCK:
Enter UPDATE-FUNCTION: (SWITCH-OBJ-UPDATE1):
Enter MANUFACTURER C ):
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Enter DEBOUNCED (T/t for true, F/f for false:) (NIL): t
Enter DELAY: (0): 2
Enter POSITION: (ON): off
Rule successfully applied.
application definition DEMO

LOAD-SWITCH LR-BAR CLEAR LEFT-IN RIGHT-IN DIO DI1 D12 D13
DOO DOI DO2 DO3 DRIVE-SHIFT DO-SHIFT CLOCK LR-SHIFT-REG JKI
NOTJI JK2 NOTJ2 JK3 NOTJ3 JK4 NOTJ4 MUXI MUX2 MUX3 MUX4

.> (pup 'clock) (* now there is a new switch object called clock *)
CLOCK - the switch-obj

re: :class: switch-obj
parent-expr: #1<DEMO - the spec-obj>
name: clock
switch-obj-update-function: switch-obj-updatel
switch-obj-manufacturer: " "
switch-obj-debounced: true
switch-obj-delay: 2
switch-obj-position: off

.> (ar 2) (* editing an object *)
Enter the name of the object to edit: (DEMO): clock
Enter UPDATE-FUNCTION: (SWITCH-OBJ-UPDATEI):
Enter MANUFACTURER ( ):
Enter DEBOUNCED (T/t for true, F/f for false:) (T):
Enter DELAY: (2):
Enter POSITION: (OFF): on
Rule successfully applied.
application definition DEMO

LOAD-SWITCH LR-BhR CLEAR LEFT-IN RIGHT-IN DIO DII D12 D13
DO0 DOI D02 D03 DRIVE-SHIFT DO-SHIFT CLOCK LR-SHIFT-REG JK1
NOTJ1 JK2 NOTJ2 JK3 NOTJ3 JK4 NOTJ4 MUXi MUX2 MUX3 MUX4

.> (ar 3) (* adding a new object *)
Enter the application name: (DEMO):
What type of object do you want to create?: and-gate-obj
What is the object's name?: new-and
Enter UPDATE-FUNCTION: (AND-GATE-OBJ-UPDATEi):
Enter DELAY: (0): 1
Enter MANUFACTURER C ):
Enter MIL-SPEC? (T/t for true, F/f for false:) (NIL): f
Enter POWER-LEVEL: (0.0): 1.2
Rule successfully applied.
application definition DEMO

LOAD-SWITCH LR-BAR CLEAR LEFT-IN RIGHT-IN DIO DI1 D12 D13
DO0 DOI D02 D03 DRIVE-SHIFT DO-SHIFT CLOCK LR-SHIFT-REG JKI
NOTJ1 JK2 NOTJ2 JK3 NOTJ3 JK4 NOTJ4 MUXI MUX2 MUX3 MUX4
NEW-AND

.> (pup 'new-and)
NEV-AND - the and-gate-obj

re: :class: and-gate-obj
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parent-expr: #1<DEMO - the spec-obj>
and-gate-obj-update-function: and-gate-obj-updatel
and-gate-obj-delay: I
and-gate-obj-manufacturer:
and-gate-obj-mil-spec?: false
and-gate-obj-power-level: 1.2
name: new-and

.> (ax 4) (* deleting an object *)
What object do you want to delete?: (DEMO): new-and

Are you sure you want to detete NEW-AID (y or n) y

Rule successfully applied.
application definition DEMO

LOAD-SWITCH LR-BAR CLEAR LEFT-IN RIGHT-IN DIO DI1 D12 D13
DOO DO1 D02 D03 DRIVE-SHIFT DO-SHIFT CLOCK LR-SHIFT-REG JK1
IOTJ1 JK2 IOTJ2 3K3 NOTJ3 JK4 UOTJ4 MUXI MUX2 MUX3 MUX4

.> (ar 5) (* saving an object *)
Enter object to save: (DEMO): load-switch
Enter the path (include last /)./objs/:

Do you really want to save ./objs/LOAD-SWITCH-SAVED? (y or n) y

Rule successfully applied.
application definition DEMO

LOAD-SWITCH LR-BAR CLEAR LEFT-IN RIGHT-Il DIO DI1 D12 D13
DOO DOI D02 D03 DRIVE-SHIFT DO-SHIFT CLOCK LR-SHIFT-REG JK1
NOTJi JK2 IOTJ2 JK3 NOTJ3 JK4 NOTJ4 MUXI MUX2 MUX3 MUX4

.> (ar 4)
What object do you want to delete?: (DEMO): load-switch

Are you sure you want to detete LOAD-SWITCH (y or n) y
Rule successfully applied.
application definition DEMO

LU-BAR CLEAR LEFT-IN RIGHT-IN DIO DII D12 D13 DOO DOI D02
D03 DRIVE-SHIFT DO-SHIFT CLOCK LR-SHIFT-REG JKI NOTJI JK2
1OT32 JK3 1OTJ3 JK4 IOTJ4 MUXi MUX2 •UX3 PUX4

.> (ax 7) (* load the object just saved to a file and then deleted
from the application definition *)

Enter the path (include last /)./objs/:
Objects in the technology base:
"LOAD-SWITCH"
"TEST-STR-SUB"
"AID-i"

Enter the object name: load-switch
Enter the application name: (DEMO):
Rule successfully applied.
application definition DEMO
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LR-BAR CLEAR LEFT-IN RIGHT-IN DIO DII D12 D13 DOO DO D02
D03 DRIVE-SHIFT DO-SHIFT CLOCK LR-SHIFT-REG JKi NOTJ1 JK2
NOTJ2 JK3 NUTJ3 JK4 NOTJ4 NUXi MUX2 MUX3 NUX4 LOAD-SWITCH

.> (ar 2) (* edit an object that includes sets and sequences 4)

Enter the name of the object to edit: (DEMO): drive-shift

"Enter CONTROLLEES"
"What do you want to do?"
I ) ADD-ELEMENTS
2 ) DELETE-ELEMENTS
3 ) MAKE-SEQ-EMPTY
4 ) FINISH-EDITING
1
adding elements
1 - LR-SHIFT-REG
2 - CLOCK

3 - LOAD-SWITCH
4 - LR-BAR
6 - CLEAR
6 - LEFT-IN
7 - RIGHT-IN
8 - DIO
9 - DII
10 - D12
11 - D13
12 - D03
13 - D02
14 - DOI

15 - DOO
What index do you want to add:10

(a symbol): outputx (* adding an invalid element *)

"What do you want to do?"
1 ) ADD-ELEMENTS
2 ) DELETE-ELEMENTS
3 ) MAKE-SEQ-EMPTY
4 ) FINISH-EDITING
4
"Enter UPDATE"
"What do you want to do?"

1 ) ADD-ELEMENTS
2 ) DELETE-ELEMENTS
3 ) MAKE-SEQ-EMPTY
4 ) FINISH-EDITING
1
adding elements
1 - setstate LOAD-SWITCH (POSITION, ON)
2 - setstate Li-BAR (POSITION, OFF)

3 - update CLEAR
4 - update CLOCK
5 - update LOAD-SWITCH
6 - update Li-BAR
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7 - update LEFT-IN

8 - update RIGHT-IN
9 - update D13
(* some output omitted *)
85 - update DO0
86 - update DOO
What index do you want to add:87

(* the following uses the domain model object hierarchy to determine what
class of object is appropriate and, if it has subclasses, which subclass
object should actually be built *)

"Enter which type of object you want to build"
I ) CALL-OBJ
2 ) WHILE-STMT-OBJ
3 ) IF-STMT-OBJ
1
"Enter which type of object you want to build"
I ) CONFIGURE-CALL-OBJ
2 ) STABILIZE-CALL-OBJ
3 ) INITIALIZE-CALL-OBJ
4 ) DESTROY-CALL-OBJ
5 ) SETSTATE-CALL-OBJ
6 ) SETFUNCTION-CALL-OBJ
7 ) CREATE-CALL-OBJ
8 ) UPDATE-CALL-OBJ
8
Enter OPERAND: (*UNDEFIIED*): outputx (* adding a call to the

invalid element *)
"What do you want to do?"
1 ) ADD-ELEMENTS
2 ) DELETE-ELEMENTS
3 ) MAKE-SEQ-EMPTY
4 ) FINISH-EDITING
4
"Enter INITIALIZE"

creating a seq of type NAME-VALUE-OBJ
Add another element? (y or n) n
Rule successfully applied.
application definition DEMO

LR-BAR CLEAR LEFT-IN RIGHT-IN DIO DII D12 DI3 DOO DOI D02
D03 DRIVE-SHIFT DO-SHIFT CLOCK LR-SHIFT-REG JKI NOTJI JK2
NOTJ2 JK3 NOTJ3 JK4 NOTJ4 MUXI MUX2 MUX3 MUX4 LOAD-SWITCH

.> (pn 'drive-shift)
subsystem DRIVE-SHIFT is controls:

LR-SHIFT-REG, CLOCK, LOAD-SWITCH, LR-BAR, CLEAR, LEFT-IN,
RIGHT-IN, DIO, D1I, OUTPUTX, D12, D13, D03, D02,
DOl, DOO
imports: exports: initialize procedure: update procedure:
setstate LOAD-SWITCH (POSITION, ON)

setstate LR-BAR (POSITION, OFF) update CLEAR update CLOCK
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update LOAD-SWITCH update LA-BAR update LEFT-IN
update RIGHT-Il update D13 update D12 update DII update DIO
update LR-SHIFT-REG update D03 update D02 update DOI
update DOO setstate LOAD-SWITCH (POSITION, OFF)
setstate Li-BAR (POSITION, OFF) update LOAD-SWITCH
update LR-BAR update LA-SHIFT-REG update D03 update D02
update DOI update DO0 update LA-SHIFT-REG update D03
update D02 update DO1 update DOO update LR-SHIFT-REG
update DO3 update D02 update DOI update DOO
update LA-SHIFT-REG update DO3 update D02 update DOI
update DO0 setstate LOAD-SWITCH (POSITION, ON)
setstate LR-BAR (POSITION, OFF) update CLEAR update CLOCK
update LOAD-SWITCH update LA-BAR update LEFT-IN
update RIGHT-IN update D13 update D12 update DII update DIO
update LA-SHIFT-REG update D03 update D02 update DO1
update DO0 setstate LOAD-SWITCH (POSITION, OFF)
setstate LR-BAR (POSITION, ON) update LOAD-SWITCH
update LA-BAR update D13 update DI2 update DII update DIO
update LR-SHIFT-REG update D03 update D02 update DOI
update DO0 update LR-SHIFT-AEG update D03 update D02
update DOI update DUO update LR-SHIFT-REG update D03
update D02 update DOI update DO0 update LA-SHIFT-REG
update D03 update D02 update DOI update DOO update OUTPUTX

now tests the semantics *)
.> (ar 15)

ERROR -- "Object OUTPUTX does not exist" (* semantic error, outputx should

exist in the object base but it
does not. *)

Object: subsystem DRIVE-SHIFT

Rule successfully applied.
application definition DEMO

LR-BAR CLEAR LEFT-IN RIGHT-IN DIO DII D12 D13 DO0 DOI D02
D03 DRIVE-SHIFT DO-SHIFT CLOCK LR-SHIFT-REG JK1 NOTJ1 JK2
NOTJ2 JK3 NOTJ3 JK4 NOTJ4 MUll MUX2 NUX3 MUX4 LOAD-SWITCH

(* the object outputx does not exist, so the application definition
fails this check. Now, remove it from the update algorithm *)

.> Car 2)
Enter the name of the object to edit: (DEMO): drive-shift
"Enter CONTROLLEES"
"What do you want to do?"
I ) ADD-ELEMErTS
2 ) DELETE-ELEMENTS
3 ) RAKE-SEQ-EMPTY
4 ) FINISH-EDITING
2
Delets another element? (y or n) y
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"Which one do you want to delete?"
I ) LR-SHIFT-REG
2 ) CLOCK
3 ) LOAD-SWITCH
4 ) LR-BAR
5 ) CLEAR
6 ) LEFT-IN
7 ) RIGHT-IN
8 ) DIO
9 ) DII
10 ) OUTPUTX
11 ) D12
12 ) D13
13 ) D03
14 ) D02
15 ) DO1
16 ) DOO
10 (* remove outputx from controlees list *)
Delete another element? (y or n) n
"What do you want to do?"
1 ) ADD-ELEMENTS
2 ) DELETE-ELEMENTS
3 ) MAKE-SEQ-EMPTY
4 ) FINISH-EDITING
4
"Enter UPDATE'
"What do you want to do?"
1 ) ADD-ELEMENTS
2 ) DELETE-ELEMENTS
3 ) MAKE-SEQ-EMPTY
4 ) FINISH-EDITING
2
Delete another element? (y or n) y
"Which one do you want to delete?"
I ) setstate LOAD-SWITCH (POSITION, ON)
2 ) setutate LR-BAR (POSITION, OFF)
3 ) update CLEAR

(* some output omitted *)
85 ) update DOI
86 ) update DO0
87 ) update OUTPUTX
87 (* remove call to update outputx *)
Delete another element? (y or n) n
"What do you want to do?"
1 ) ADD-ELEMENTS
2 ) DELETE-ELEMENTS
3 ) MAKE-SEQ-EMPTY
4 ) FINISH-EDITING

4
"Enter INITIALIZE"
creating a seq of type NAME-VALUE-OBJ
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Add another element? (y or n) n
Rule successfully applied.
application definition DEMO

LR-BAR CLEAR LEFT-IN RIGHT-IN DIO DII D12 D13 DOO DOI D02
D03 DRIVE-SHIFT DO-SHIFT CLOCK LR-SHIFT-REG JKI NOTJI SK2
NOTJ2 JK3 NOTJ3 JK4 NOTMJ4 MUXl NUX2 NUX3 MUX4 LOAD-SWITCH

.> (ar 15)
(* perform semantic checks and indicate sources for imports *)
(* execute *)

D.2 Binary Array Multiplier

The following session demostrates the use of generic objects by building a binary

array multiplier shown in Figure D.2.

ANDI

AN AND

HA1 HA2

C C S

C3  C2  C1

Figure D.2. Binary Array Multiplier
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application definition bin-arr-mult1
% binary array multiplier using two generic half adders

switch a-zero position: on
switch a-one position: off

switch b-zero position: on
switch b-one position: off

led c-zero
led c-one
led c-two
led c-three

and-gate and-al-bl % and4 in figure
and-gate and-al-bO % and3 in figure
and-gate and-aO-bl %. and2 in figure
and-gate and-aO-bO % andl in figure

and-gate ha-l-andl
and-gate ha-l-and2
or-gate ha-i-or
not-gate ha-i-not

and-gate ha-2-andl
and-gate ha-2-and2
or-gate ha-2-or
not-gate ha-2-not is mil-spec

not-gate not-x-hal
not-gat e not-y-hal
not-gate not-x-ha2
not-gate not-y-ha2

generic HA-I is new /adders/gen-ha-no-int-3 ha-i-andl, ha-l-and2,
ha-i-or, ha-i-not

generic HA-2 is new /adders/gen-ha-no-int-3 ha-2-andl, ha-2-and2,
ha-2-or, ha-2-not

subsystem bin-ar-mult is
controls: HA-i, RA-2,

and-al-bl, and-al-bO, and-aO-bl, and-aO-bO,
a-zero, a-one, b-zero, b-one,
c-zero, c-one, c-two, c-three,

not-z-hal, not-y-hal, not-x-ha2, not-y-ha2

update procedure:
update a-zero

update a-one
update b-zero
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update b-on.
update and-aO-bi
update and-aO-bO
update and-al-bl
update and-al-bO

update not-x-hal
update not-y-hai
update not-x-ha2
update not-y-ha2

update HA-i
update HA-2

update c-zero
update c-one
update c-two
update c-three

application run-barn is
controls: bin-ar-mult
update procedure:

update bin-ar-mult

.> ar 9) (*parse in the input file *
Enter the full name of the file: . /DSL/tests/bin-array-mult
Rule successfully applied.
application definition DENO
LR-BAR CLEAR LEFT-IN RIGHT-Il DIO DlI D12 D13 DOO DOI D02

D03 DRIVE-SHIFT DO-SHIFT CLOCK LR-SHIFT-REG JK1 NOTJi 3K2
NOTJ2 JK3 10T33 JK4 IOTJ4 ff111 NUX12 ff113 NUM1 LOAD-SWITCH

.>(mcn 'bin-arr-multi)
application definition BII-ARR-MULTI

A-ZERO A-ORE B-ZERO B-ONE C-ZERO C-ONE C-TWO C-THREE
AND-Al-fl AND-Al-BO AND-AO-Bi AND-AO-BO HA-l-ANDi HA-l-AND2
HA-i-OR HA-i-NOT HA-2-ANDI HA-2-AND2 HA-2-OR HA-2-NOT
NOT-I-HAl NOT-Y-HAi NOT-X-HA2 NOT-Y-HA2 HA-i HA-2
BIN-AR-MULT RUNI-BAN

.>(pup 'ha-i) (*HA-i is a generic instance, it has not been
instantiated yet into a subsystem *

HA-i - the generic-inst
re: :class: generic-inst
parent-expr: *2CBIN-ARR-MULTI - the spec-obj>
name: ha-i
generic-parameters: fHA-i-ANDI, HA-i-AND2,.J
generic-to-be-used: /adders/gen-ha-no-int-3
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.> ar 13) (*complete application definition *
Enter the application name: (BII-ARR-NULTI):
Instantiating Generic generic HA-i is new /ADDERS/GEN-HA-NO-INT-3
HA-i-AIDi, HA-i-AND2, HA-i-OR, HA-i-NOT

Instantiating Generic generic HA-2 is new /ADDERS/GEN-HA-NO-INT-3
HA-2-ANDI, HA-2-AND2, HA-2-OR, HA-2-NOT

Rule successfully applied.
application definition BIN-ARR-NULTI
A-ZERO A-ONE B-ZERO B-ONE C-ZERO C-ONE C-TWO C-THREE

AND-Ai-Bi AND-Al-BO AID-AO-BI AND-AO-BO HA-i-ANDI HA-i-AND2
HA-i-OR HA-i-NOT HA-2-ANDI HA-2-AID2 HA-2-OR HA-2-IOT
NOT-I-HAl NOT-Y-HAI NOT-X-HA2 IOT-Y-HA2 BIN-AR-MULT RUN-BAM
HA-i HA-2

.>(pn 'ha-i) (* now HA-i is a subsystem, notice that the import

Sources are defined even though the semantic checks
have not been executed. This information was saved
with the generic object. *

subsystem HA-i is controls:
HA-i-ANDI, HA-i-AND2, HA-i-OR, HA-i-NOT
imports:

INI SIGNAL BOOLEAN HA-1-ANDi C OUTI. DRIVE-ADD2 NEGATE-X)
1N2 SIGNAL BOOLEAN HA-1-AND1 C OUTI DRIVE-ADD2 NEGATE-Y)
INi SIGNAL BOOLEAN Hk-i-kND2
( OUTI DRIVE-ADD2 SWITCH-XINPUT)

1N2 SIGNAL BOOLEAN HA-i-AND2
( OUTI DRIVE-ADD2 SWITCH-YINPUT)

IM SIGNAL BOOLEAN HA-i-OR COUTI HA-i HA-i-ANI)
IN2 SIGNAL BOOLEAN HA-i-OR (OUTi HA-i HA-i-AND2)
INI SIGNAL BOOLEAN HA-i-NOT COUTi HA-i HA-i-OR)

exports:
OTJTI. SIGNAL BOOLEAN NIL KA-i-ANDi

OUTI SIGNAL BOOLEAN T HA-1-AND2
OtJTI SIGNAL BOOLEAN T HA-i-OR
OUTI SIGNAL BOOLEAN NIL HA-i-NOT

initialize procedure: update procedure:
update HA-1-AND1 update HA-l-AND2 update HA-i-OR

update HA-i-NOT

(*the following shows how the same generic instance could have been
built interactively instead of through the grammar *

.> ar 10)
Enter the path name (include last /)./generics/: adders/
Here are the existing generics:
"GEN-4-DIT-ADDER's
"GEN-FULL-ADDER"
"GEN-HA-NO-INT-314
"GEN-HA-NO-INT"
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"GENERIC-HAl"
"GEN-HA-PLAIN"
Enter the name of the generic to instantiate: gen-ha-no-int-3
Enter the application name: (BIN-ARR-MULTi):
Enter the name for the generic instance: test-half-adder
Enter a symbol for GEN-HAI-ANDI: (*UNDEFINED*): ha-i-andl
Enter a symbol for GEN-HAI-AND2: (*UNDEFINED*): ha-i-and2
Enter a symbol for GEN-HAI-ORI: (*UNDEFINED*): ha-l-or4
Enter a symbol for GEN-HAl-NOTI: (*UNDEFINED*): ha-i-not
Rule successfully applied.
application definition BIN-AR-MULTi

A-ZERO A-ONE B-ZERO B-ONE C-ZERO C-ONE C-TWO C-THREE
AND-Al-Bl AND-Al-BO AND-AO-B1 AND-AO-BO HA-I-ANDI HA-1-AND2
HA-I-OR HA-i-NOT HA-2-ANDI HA-2-AND2 HA-2-OR HA-2-NOT
NOT-X-HAl NOT-Y-HA1 NOT-X-HA2 NOT-Y-HA2 BIN-AR-MULT RUN-BAN
HA-I HA-2 TEST-HALF-ADDER

.> (ax 13) (* the new instance must be instantiated *)
Enter the application name: (BIN-ARR-MULTI):
HA-i-OR4 should be an object, but it is not in the object base
Invalid generic object generic TEST-HALF-ADDER is new ADDERS/GEN-HA-NO-INT-3

HA-1-ANDI, HA-I-AND2, HA-l-OR4, HA-I-NOT
Do you want to edit the object?(y or n) y

(* ha-l-or4 was not in the object base *)
HA-I-OR4 should be an object, but it is not in the object base
Enter a symbol for GEN-HAI-ANDI: (HA-l-ANDI):
Enter a symbol for GEN-HAI-AND2: (HA-l-AND2):
Enter a symbol for GEN-HAl-ORI: (HA-l-OR4): ha-i-or
Enter a symbol for GEN-HAl-NOTI: (HA-i-NOT):
Enter the name: (TEST-HALF-ADDER):
Rule successfully applied.

.> Car 4)
What object do you want to delete?: (BIN-ARR-MULTI): test-half-adder

Are you sure you want to detete TEST-HALF-ADDER (y or n) y
Rule successfully applied.
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Appendix E. Code

! in-package("ItT')
H in-grammar('user)

#11

File name: dm-ocu.re

Description: Domain Model for the OCU model

11*

% OBJECT CLASSES:

var World-Obj object-class subtype-of user-Object

var Spec-Obj object-class subtype-of World-Obj
%. A high-level object that ties together all of the parts of an
% application definition

var Spec-Part-Obj : object-class subtype-of World-Obj
%. Spec-Parts describe all of the senetences used by the application
% specialist to build an application definition

var Incomplete-Obj : object-class subtype-of Spec-Part-Obj
var Generic-Inst object-class subtype-of Spec-Part-Obj
var Load-Obj object-class subtype-of Spec-Part-Obj

var Component-Obj object-class subtype-of Spec-Part-Obj
%. Component-Obj's are all the parts of a final definition

var Application-Obj object-class subtype-of Component-Obj
var Subsystem-Obj object-class subtype-of Component-Obj
var Primitive-Obj : object-class subtype-of Component-Obj

var Statement-Obj : object-class subtype-of World-Obj
var If-Stat-Obj object-class subtype-of Statement-Obj
var While-Stmt-Obj object-class subtype-of Statement-Obj
var Call-Obj : object-class subtype-of Statement-Obj

var Update-Call-Obj : object-class subtype-of Call-Obj
var Create-Call-Obj : object-class subtype-of Call-Obj
var SetFunction-Call-Obj : object-class subtype-of Call-Obj
var SetState-Call-Obj : object-class subtype-of Call-Obj
var Destroy-Call-Obj : object-class subtype-of Call-Obj
var Initialize-Call-Obj : object-class subtype-of call-obj
var Stabilize-Call-Obj : object-class subtype-of call-obj
var Configure-Call-Obj : object-class subtype-of call-obj
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var Import-Export-Obj :object-class subtype-of World-Obj
var Import-Obj object-class subtype-of Import-Export-Obj
var Export-Obj object-class subtype-of Import-Export-Obj
var Nane-'Jalue-Obj :object-class subtype-of World-Obj
var Source-Obj :object-class subtype-of World-Obj

var Generic-Obj object-class subtype-of World-Obj

%%.ATTRIBUTES:

%. Spec-Obj:
var Spec-Parts :map(Spec-Obj, seq(Spec-Part-Obj))

computed-using
Spec-Parts Cx) D

% Incomplete-Obj:
var Obj-Type :map(Incomplete-Obj, symbol) ={fI

%. Generic-Inst:
var Generic-To-Be-Used :map(Generic-Inst, symbol) ={I}
var Generic-Parameters :mapCGeneric-Inst, seq(any-type))

computed-using
Generic-Parameters(x) =C

% Load-Obj:
var Object-To-Load :map(Load-Obj, symbol) {II

%( Application-Obj:
var Application-Components :map(Application-Obj, seq(symbol))

computed-using
Application-Components(x)=0

var Application-update :mapCApplication-Obj, seqCStatement-Obj))
computed-using
Application-update(x) 0

% Subsystem-Obj:
var Controllees map(Subsystem-Obj, seq~symbol))

computed-using
controllaes(x) = 0

U.V changed seq to set in import-Area and Export-Area ...

var Import-Area map(Subsystem-OYbj, set(Import-Obj))
computed-using
Import-Area~x) ={
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var Export-Area map(Subsystem-Obj, setCExport-Obj))
computed-using
Export-Area(x) ={

var Update mapCSubsystem-Obj, seq(Statement-Obj))
computed-using

Update~x) 0 E
var Initialize map~subsystem-obj, seq~name-value-obj))

computed-using
Initialize(x) 0

% Statements:

% If-Stmt-Obj

var If-Cond map(If-stmt-Obj, Expression) {I}
var Then-Stints map(If-stmt-Obj, seq(Statement-Obj))
computed-using

Then-Stmts(x) =0
var Else-Stints inap(If-stmt-Obj, seq(Statement-Obj))
computed-using

Else-Stmts(x) =0

% While-Stuit-Objt

var While-cond :map(While-stint-Obj, expression) {I}
var While-stints :map(While-stint-Obj, seq(Statement-Obj))

computed-using
While-stats(z)=0

% Call-Obj:
var operand :map(Call-Obj, symbol) {I}

%. Create-Call-Obj:
var object-type :map(create-Call-Obj, symbol) = f ill

%. SetFunction-Call-Obj:
var function-name :map(SetFunction-Call-Obj, symbol)={II}
var coefficients : map(SetFunction-Call-Obj, set(nazae-value-Obj))

computed-using
coefficients(x) ={

%. SetState-Call-Obj:
var state-changes : miap(SetState-Call-Obj, set(name-value-Obj))

computed-using
state-changes(x) ={
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% Import-Obj:
var import-name map(lmport-Obj, symbol) = f ill
var import-category map(lmport-Obj, symbol) = f ill
var import-type-data map(Import-Obj, symbol) = {1 }
var consumer map(Import-Obj, symbol) = fill
var Source map(Import-Obj, setCSource-Obj))

computed-using
Source(x) {

% Export-Obj:
var export-name map(Export-Obj, symbol) =
var export-category map(Export-Obj, symbol) = f ill
var export-type-data map(Export-Obj, symbol) = f ill
var value map(Export-Obj, any-type) = f ill
var producer map(Export-obj, symbol) ={ill

% lame-Value-Obj:
var lame-value-lame map(lame-value-Obj, symbol) CI}
var lame-value-value map(Name-value-Obj, any-type) = f ill

%. Soiirce-Obj:
var Source-Subsystem map(Source-Obj, symbol) = fill}
var Source-Object map(Source-Obj. symbol) = {fiIl}
var Source-Name mapCSource-Obj, symbol) = fill

% Generic-Obj:
var Obj-Instance map(Generic-Obj, Symbol) ={lI

var Placeholder-IDs map(Generic-Obj, seq(any-type))
computed-using
Placeholder-IDs(x) 0

var Placeholder-Type map(Generic-Obj, seq~symbol))
computed-using
Placeholder-Type(x) D

vax Obj-List map(Generic-Obj, seq~symbol))
computed-using
Obj-List(x) = D

%---------------------------------------------------------

% Code for Boolean-expressions
var Expression :object-class subtype-of World-Obj
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var Literal-Expression : object-class subtype-of expression

var Identifier : object-class subtype-of Literal-Expression
var Boolean-Literal : object-class subtype-of Literal-Expression

var True-Literal : object-class subtype-of Boolean-Literal
var False-Literal : object-class subtype-of Boolean-Literal

var Number-Literal : object-class subtype-of Literal-Expression
var Integer-Literal : object-class subtype-of Number-Literal
var Real-Literal : object-class subtype-of Number-Literal

var String-Literal : object-class subtype-of Literal-Expression

var Unary-Expression object-class subtype-of Expression
var Not-Exp object-class subtype-of Unary-Expression
var abs-exp object-class subtype-of unary-expression
var negate-exp object-class subtype-of unary-expression
var positive-exp object-class subtype-of unary-expression

var Binary-Expression object-class subtype-of Expression
var Or-Exp object-class subtype-of Binary-Expression
var And-Exp : object-class subtype-of Binary-Expression
var Equal-Exp object-class subtype-of Binary-Expression
var Not-Equal-Exp : object-class subtype-of Binary-Expression
var LT-Exp object-class subtype-of Binary-Expression
var LTE-Exp : object-class subtype-of Binary-Expression
var GT-Exp : object-class subtype-of Binary-Expression
var GTE-Exp : object-class subtype-of Binary-Expression

var add-exp : object-class subtype-of Binary-Expression
var subtract-exp : object-class subtype-of Binary-Expression
var multiply-exp : object-class subtype-of Binary-Expression
var divide-exp : object-class subtype-of Binary-Expression
var mod-exp : object-class subtype-of Binary-Expression
var exponential-exp : object-class subtype-of Binary-Expression

U'/. Attributes for expressions:
var Id-Name : map(Identifier, symbol) = fi I}
var Id-Source : map(Identifier, import-export-obj)= ([ [I

var Int-value : map(Integer-Literal, integer) = (1 I}
var Real-value : map(Real-Literal, real) = (I I}
var Boolean-value : map(Boolean-Literal, boolean) = {[ }
var String-value : map(String-Literal, string) ={ I}

var Argumentl map(Binary-Expression, Expression) = I}
var Argument2 : sap(Binary-Expression, Expression) = {I I}
var Argument map(Unary-Expression, Expression) = {I I}

UX Tree Attributes For Expressions
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Form Expression-Attrs
def ine-tree-attributesC 'IBinary-Express ion. { Argumenti, 'Argument2});
dot ine-tree-attributes( 'Unary-Expression, {'Arguinent})

Form Doefine-AST
dot ine-tree-attributes( 'While-Stznt-Obj, {'While-Cond, 'While-Stmts});
def ine-tree-attributes( 'If-Stmt-Obj,

{'If-Cond, 'Then-Stints, 'Else-Stmts});
define-tree-attributes C'Call-Obj, {'Operaxid});
define-tree-attribute. C'SetFiuiction-Call-abj,

{'Function-Nazne, 'Coe!! icients});
dot ine-tree--attributes('SetState-Call-Obj, {'state-changes});
dot ine-tree-attributes( 'Application-Obj,

{'Application-Components, 'Application-Update});
dot ine-tree-attributes( 'Subsystem-Obj,

{ Controllees, 'Update, 'Initialize,
'Export-Area, 'Iinport-Area});

define-tre.-attributesC'Spec-Obj, {'Spec-Parts});
define-tree-attributes(' Import-Obj,

{ Import-lame, 'Import-Category,
'Import-Type-Data, 'Source, 'Consumer});

define-tree-attributes(C'Export-Obj,
{ 'Export-lame, 'Export-Category,
'Export-Type-Data, 'Value, 'Producer});

define-tree-attributes ('Generic-Obj.
{'Obi-Instance, 'Placeholder-Ids, 'Obj-List})

form Hake-Names-Unique
unique-names-class( 'Spec-Obj, true);
unaique-names-class C'Application-Obj, true);
unique-names-class( 'Subsystem-Obj, true);
unique-names-class ('Generic-Obj, true);
unique-names-class(C'Generic-Inst, true);
unique-names-class('Load-Obj, true);
unique-names-classC'Incomplete-Obj, true)
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:! in-package("RU")
! in-grammar( 'syntax)

#11
File name: gram-ocu.re

Description: The OCU grammar - all of the domain-independent productions,
most of which describe the OCU model
NOTE: If you change this file, you must also recompile the

domain-specific grammar. If no changes are made to that
grammar, erase its .fasl4 file to make sure it recompiles.
Otherwise, you won't see the changes made to the OCU grammar.

I1#

grammar OCU

no-patterns

start-classes Spec-Obj, Subsystem-obj, Application-Obj,
Incomplete-obj, Load-Obj, Generic-Obj

file-classes Spec-Obj, Subsystem-obj, Application-Obj,
Incomplete-obj, Load-Obj, Generic-Obj

product ions

Spec-Obj . = ["application definition" name {Spec-Parts + ""} J
builds Spec-Obj,

Application-Obj ::= ["application" name "is"
"controls:" application-components *

"update procedure:"

application-update * ""]
builds Application-Obj,

Subsystem-Obj :: ["subsystem" name "is"
"controls:" Controllees *

{ ["imports:" Import-Area * ""] }
{["exports:" Export-Area * ""]}
{ ["initialize procedure:"

initialize * ""I}
"update procedure:"
update * "" I builds Subsystem-Obj,

Import-Obj : : = [import-name import-category import-type-data
consumer "(" [source * ""] ")"1

builds Import-Obj,
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Export-Obj = [export-name export-category export-type-data
value producer] builds Export-Obj,

Source-Obj [Source-Name Source-Subsystem Source-Object]
builds Source-Obj,

Generic-lnst ["generic" name "is" "new" Generic-To-Be-Used
Generic-Parameters * "t"]

builds Generic-Inst,

Incomplete-Obj ["object" obj-type "," name]
builds Incomplete-obj,

Load-Obj ["load" Object-To-Load]
builds Load-Obj,

If-Stmt-Obj ["if" if-cond "then" Then-Stints + ""

{["else" Else-Stints + ""'}
"end" "if" I builds If-Stmt-Obj,

While-Stmt-Obj = ["while" while-cond "loop"
While-Stints * "
"end" "while" I builds While-Stmt-Obj,

Update-Call-Obj ["update" operand] builds Update-Call-Obj,

Create-Call-Obj ["create" operand object-type]
builds Create-Call-Obj,

SetFunction-Call-Obj = ["setfunction" operand function-name
Coefficients * ""]

builds SetFunction-Call-Obj,

SetState-Call-Obj = ["setstate" operand

State-Changes * ""]
builds SetState-Call-Obj,

Destroy-Call-Obj = ["destroy" operand]
builds Destroy-Call-Obj,

Initialize-Call-Obj ["initialize" operand]
builds Initialize-Call-Obj,

Configure-Call-Obj = ["configure" operand)
builds Configure-Call-Obj,
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Stabilize-Call-Obj ["stabilize" operand]
builds Stabilize-Call-Obj,

Iame-Value-Obj PT'"C name-value-name II

name-value-value '"
builds Name-Value-Obj,

Generic-Obj ::["generic-obj" name Obj-Instance
"ids:" {Placeholder-IDs + 1,1

"types:" {Paceholder-Type + I'l
"objects:" {Obj-List + "1,"1 1

builds Generic-Obj,

And-Exp [argumenti "and" argtunent2) builds And-Exp,
Or-Exp : [argumenti "or" arguinent2) builds or-Exp,

Equal-Exp [argumentl 11="" argulnent2) builds Equal-Exp,
Not-Equal-Exp :: argumenti "1="l argulnent2) builds Iot-Equal-Exp,
LT-Exp : argumenti "1<" argument2) builds LT-Exp,
LTE-Exp : argumenti "<"l argument2) builds LTE-Exp.
GT-Exp E argumenti ">' argument2) builds GT-Exp,
GTE-Exp : argumenti ">"l argument2] builds GTE-Exp,

Add-Exp ::=[argument 1"+ argument2) builds Add-Exp,
Subtract-Exp :: argumentl ""argument2) builds Subtract-Exp,

Multiply-Exp : argumenti * argument2) builds Multiply-Exp,
Divide-Exp [argument 1"1 argument2) builds Divide-Exp,
Mod-Exp [argument 1 "mod" argument2) builds Mod-Exp,
Exponential-Exp :=[argumenti "**" arguznent2) builds Exponential-Exp,

Abs-Exp :: [abs" argument) builds Abs-Exp,
Not-Exp (: "not" argument) builds Not-Exp,
Negate-Exp : [" argument) builds Iegate-Exp,
Positive-Exp : [""argument) builds Positive-Exp,

Identifier :: [Id-Name) builds Identifier,
Integer-Literal :=[It-Value) builds Integer-Literal,
Real-Literal ::=[Real-Value) builds Real-Literal,
String-Literal : =[String-Value) builds String-Literal,
True-Literal : [true") builds True-Literal,
False-Literal [ "false"] builds False-Literal

symbol-start-chars
"abcdefghijklanopqrstuvwxyzABCDEFGHIJKLNNOPQRSTUVWXYz"I
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symbol-continue-chars
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMIOPQRSTUVWXYZ-0123456789"

precedence

for expression brackets "C" matching ")"

(same-level "and", "or" associativity left),
(same-level "<"1=, "< 1=" "=", ">=", "/1 " associativity none),
(same-level "+","-" associativity left),
(same-level "*", "1" "mod" associativity left),
(same-level "not" associativity none),
(same-level "abs" associativity none),
(same-level "**" associativity right)

end
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! in-package("RU")
!! in-grammar('user)

#11
File name: modify-obj.re

Description:
The functions in this file allow the user to modify objects - delete
objects, edit existing objects, and add new objects

Rules:
Edit-An-Object
Add-An-Object
Delete-An-Object

Functions:
Modify-Some-Object

Modify-Object
Get-Attr-Name
Update-Attr
Find-Subnode
Make-New-Object
Read-Set
Edit-Set
Read-Seq
Edit-Seq
Is-Valid-New-Type
Add-Object
Delete-Object

I1#

var Attrs-To-Ignore : set(symbol) =

{'import-area, 'export-area, 'coefficients}
% attributes that shouldn't be edited

U Rules that can be performed by the user

% ---------------------------------------------------------------
rule Edit-An-Object(X: object) % Do not change the name to edit-object,

% it exists already)
true -- > Modify-Some-Object(x)

rule Add-An-Object(X: Object)
true -- > Add-Object(x)

rule Delete-An-Object(X: Object)
true -- > Delete-Object(X)

% ------------------------------------------------------

" Asks the user for the name of the object, checks that it is a subclass
of component object (i.e., its a subsystem or primitive domain object),
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and then modifies the object"

function Modify-Some-Object(X : object) =

let (obj-to-edit : symbol =
Read-Symbol-Default ("Enter the name of the object to edit",

IameCx)))

let (Edit-Obj : object = find-object('component-obj, obj-to-edit))
if defined?(Edit-Obj) then

Changes-Made <- true;
Edit-Obj <- Modify-Object (Edit-Obj)

else
format(t, "Object -s is not a current object

that can be edited-%", obj-to-edit)

"Given an object, goes through each attribute that's not one of the
predefined attributes and gets a value for it"

function Modify-Object (obj : object) : object =
(enumerate atr over return-attribute-list(obj) do

if name(atr) -in Attrs-To-Ignore and
String-To-Symbol(Get-Attr-Name(Name(Atr)), "RU") -in

Attrs-To-Ignore then
update-attr(obj, atr)

Obj

"If the given name has the object class name prepended, return just the
attribute name"

function Get-Attr-Iame(Full-Name : symbol) : string :

let (atr-string = symbol-to-string(full-name))
let(just-name string =

arb( {atr-name I (atr-name, first-part)
atr-string = [$first-part, Satr-name) &
Is-Valid-New-Type(string-to-symbol(first-part, "RU")) }) )

if undefined?(Just-Name) then
symbol-to-string(full-name)

else
if first(just-name) : #\- then

Rest(just-Name)
else

Just-name
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" Given an object and an attribute, finds the data type of the attribute,
calls the appropriate read function, and stores the value in the
attribute. If the attribute is an object, it first creates an object
of that type
(re: :bindingname(re: :range-type(re: :data-type~attribute-binding))))
and then gets the information for that object "

function Update-Attr(for-obj :object, attrib :re::binding)

let (attr-type symbol = tell-type C attrib),
prompt string = concatC"Enter "1,

Get-Attr-Iazne(naine(attrib))),
current-value any-type = Retrieve-Attribute(for-obj, attrib))

if attr-type ='real then
store-attributeCf or-obj, attrib,

read-real-def ault (prompt, current-value))
elseif attr-type = 'integer then

store-attributeCf or-obj, attrib,
read-integer-default (prompt, current-value))

elseif attr-type = 'string then
store-attribute(for-obj, attrib,

read-string-default (prompt, current-value))
elseif attr-type = 'boolean then

store-attribute(for-obj, attrib,
read-boolean-default (prompt, current-value))

elseif attr-type = 'symbol then
store-attribute(for-obj, attrib,

read-symbol-default (prompt, current-value))
elseif attr-type = 'any-type then

store-attribute(for-obj, attrib,
read-any-type-default (prompt, current-value))

elseif attr-type = 'object then
if defined?(current-value) then
%. object already exists, just update it
store-attribute(for-obj, attrib, Modify-abject(current-value))

else
store-attribute(for-obj, attrib,

Nake-New-Obj Oct C
re: :rei-to(re: :range-type(re: :data-type(attrib)))))

elseif attr-type = 'seq then
format(t, 11-s-%S, prompt); % Read-seq doesn't print this prompt
store-attribute(for-obj, attrib, read-seq(attrib, current-value))

elseif attr-type ='set then
format(t. "'a-%% prompt); % Read-Set doesn't print this prompt
store-attribute(for-obj, attrib, read-set(attrib, current-value))

alse
foruat(t. "Unrecognized type -s %11, attr-type)
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%---
"Sets the spec object to be the parent of the new object
could instead have a rule:
true -- > Parent-Expr(Kid) = parent & kid in spec-parts(parent)"

function Set-To-Parent(Kid, Parent : object) =
Spec-Parts(Parent) <- append(Spec-Parts(Parent), Kid)

" Removes the kid from the parent object"

function Remove-From-Parent(Kid, Parent : object) =

Spec-Parts(Parent) <-
[objs I (objs : object) objs in Spec-Parts(Parent) &

name(objs) -= Name(Kid)] IRemove from application

% ------------ -------------- ------------- - -------------- -------------
"Finds all of the subclasses of of an attribute and if more than one
exists, asks the user which one he wants. Class-Subclasses returns
the current class"

function Find-SubNode (attrib : re: :binding) : re: :binding =

% first, get the right object class (it may have subclasses)
let (subnodes : seq(re::binding) =

set-to-seq(Class-Subclasses(attrib, false) less attrib))
Sremove the current class (attrib) from the list of all subclasses

let (Object-wanted : re::binding = re::*undefined*)
% the type of obj to create

(if SubNodes = nil then
%. if it doesn't have any subtypes, the set is nil
Object-wanted <- attrib

elseif size(subnodes) > 1 then
% it has subobject, find out which one to use

let (response : integer =
Make-Obj ect-Menu(subnodes,

"Enter which type of object you want to build"))

Object-wanted <- subnodes(response)

else

% there's only one subtype of object,
% this probably shouldn't happen

Object-wanted <- subnodes(1)

(let (subsubnodes : set(re::binding)=
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Class-Subclasses(object-wanted, false))
if subsubnodes -= nil and-then size(subsubnodes) > 1 then

70 The object selected has subnodes, find the
%. object class at this level

object-wanted <- find-subnode(object-wanted)

object-wanted

" Given an attribute that represents an object, creates an object of that

type and gets all of the attribute data "

function Make-Iew-Object( attrib : re: :binding) : object

let (temp-obj : object = make-object(name(Find-Subnode(attrib))))
Temp-Obj <- Nodify-Obj ect (temp-obj);
Temp-obj

' --------------------------------------------------------
" Given a set, edits it"

function Edit-Set(attr : re::binding,
current-set : set(any-type)) : set(any-type) =

let (Choice-List : seq(symbol) ['Add-Elements, 'Delete-Elements,
'Make-Set-Empty, 'Finish-Editing)

let (Choice : integer = 0,
Temp-Set : set(any-type) = Current-Set)

(while Choice -= 4 do
Choice <- Make-Menu(Choice-List, "What do you want to do?");
if Choice I then

(format(t, "adding elements-%");
let (of-type : symbol = Tell-Set-Seq-Type(attr))

(while Read-Yes-Or-No( "Add another element? " ) do
if of-type = 'integer then
temp-set <- temp-set with Read-Integer("(an integer)")

elseif of-type = 'real then
temp-set <- temp-set with Read-Real("(a real number)")

elseif of-type = 'string then
temp-set <- temp-set with Read-String("(a string)")

elseif of-type = 'symbol then
temp-set <- temp-set with Read-Symbol("(a symbol)")

elseif of-type = 'boolean then
temp-set <- temp-set with Read-Boolean("(a boolean)")

elseif of-type = 'any-type then
temp-set <- temp-set with Read-Any-Type("(any-type)")

else %A must be an obj
temp-set <- temp-set with

Nake-Iew-Obj ect (Tell-Set-Seq-B inding(attr))
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) %, end while
) %, end if choice = 1

elseif Choice = 2 then
if empty(Temp-Set) then

format(t. "No elements to delete-%")
else

format (t, "deleting elements'/.");
let (Set-Elements : seq(any-type) = set-to-seq(Temp-Set))

(while "empty(Temp-Set) and-then
Read-Yes-Or-No( "Delete another element? " ) do

if Tell-Set-Seq-Type(attr) in
{'set, 'seq, 'symbol, 'real, 'integer, 'boolean} then
let (One-To-Delete : integer = Make-Menu(Set-Elements,

"Which one do you want to delete?"))
true -- > Set-Elements(One-To-Delete) -in Temp-Set;
Set-Elements <- set-to-seq(Temp-Set)

else
let (One-To-Delete : integer =

Make-Obj ect-Menu(Set-Elements,

"Which one do you want to delete?"))
true -- > Set-Elements(One-To-Delete) -in Temp-Set;
Set-Elements <- set-to-seq(Temp-Set)

) %, end while

elseif Choice = 3 then
format(t, "making set empty'.") ;

temp-set <- {}

temp-set

% ----------------------------------------------------------------
" Reads in a group of items of the given type and puts them into a set.

Since a set may already exist, it first asks if the user wants to change
the original set"

function Read-Set(attr : re::binding,
current-set : set(any-type)) : set(any-type) =

if "empty(Current-Set) then
Edit-Set (attr, current-set)

else
let (temp-set : set(any-type) =

of-type : symbol = Tell-Set-Seq-Type(attr))

format(t, "creating a set of type 's "%", of-type);
(while Read-Yes-Or-No( "Add another element? " ) do

if of-type = 'integer then
temp-set <- temp-set with Read-Integer("(an integer)")
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elseif of-type 'real then
temp-set <- temp-set with Read-Real("(a real number)")

elseif of-type = 'string then
temp-set <- temp-set with Read-String("(a string)")

elseif of-type = 'symbol then
temp-set <- temp-set with Read-Symbol("(a symbol)")

elseif of-type = 'boolean then
temp-set <- temp-set with Read-Boolean("(a boolean)")

elseif of-type = 'any-type then
temp-set <- temp-set with Read-Any-Type ("(any-type)")

else % must be an obj
temp-set <- temp-set with

Make-New-Object (Tell-Set-Seq-Binding(attr))

); a end while
temp-set

" Given a seq, edits it"

function Edit-Seq(attr re::binding,
current-seq seq(any-type)) : seq(any-type)=

let (Choice-List : seq(symbol) = ['Add-Elements, 'Delete-Elements,
'Make-Seq-Empty, 'Finish-Editing])

let (Choice :integer = 0,

Temp-Seq : seq(any-type) = Current-Seq)

(while Choice -= 4 do
Choice <- Make-Menu(Choice-List, "What do you want to do?");
if Choice = I then

(format(t, "adding elements-%");
let (of-type : symbol = Tell-Set-Seq-Type(attr),

where-to-add : integer = Size(temp-seq) + 2)

(if empty(Temp-Seq) then
where-to-add <- 1

else
(enumerate index from I to size(Temp-Seq) do

if Tell-Set-Seq-Type(attr) in
{'set, 'seq, 'symbol, 'real, 'integer, 'boolean} then
format(t, "d - -s-%", index, temp-seq(index))

else
format(t, "d - -\\pp\\V/", index, temp-seq(index))

while where-to-add > size(temp-seq) + 1 or
where-to-add < 1 do

where-to-add <-
Read-Integer("What index do you want to add")

if of-type = 'integer then
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temp-seq <- insert~temp-seq, where-to-add,
Read-Integer C" Can integer)"))

elseif of-type = 'real then
temp-seq <- insert~temp-seq, where-to-add,

Read-Real(" Ca real)"))
elseif of-type = 'string then

temp-seq <- insert~temp-seq, where-to-add,
Read-String(" Ca string)"))

elseif of-type ='symbol then
temp-seq <- insert (temp-seq, where-to-add,

Read-SymboiC" Ca symbol)"))
elseif of-type ' boolean then

temp-seq <- insert~temp-seq, where-to-add,
Read-BooleanC" Ca boolean)"))

elseif of-type = 'any-type then
temp-seq <- insert Ctemp-seq,where-to-add,

Read-Any-TypeC" Cany-type)"))
else %. must be an object

temp-seq <- insert~temp-seq, where-to-add,
Make-New-Obj ect CTell-Set-Seq-Binding~attr)))

)% end if choice = 1

elseif Choice = 2 then
if empty(Temp-Seq) then

format~t, "No elements to deletei.")
else

format(debug-on, "deleting elements-%.");

Cwhile -emptyCTemp-Seq) and-then
Read-Yes-Or-No C "Delete another element? ")do

if Tell-Set-Seq-Type(attr) in
('set, 'seq, 'symbol, 'real, 'integer, 'boolean} then

let COne-To-Delete :integer = Make-MenuC
Temp-Seq,

"Which one do you want to delete?"))
Temp-Seq <- delete CTemp-Seq, One-To-Delete)

else
let (One-To-Delete :integer = Make-Object-MenuC

Temp-S eq.
"Which one do you want to delete?"))

Temp-Seq <- deleteCTemp-Seq, One-To-Delete)

)% end while

elseif Choice = 3 then
format(t, "making seq empty-%");

temp-seq <-0
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temp-seq

V.-
" Reads in a group of items of the given type and puts them into a

sequence. Since a sequence may already exist, it first asks if
the user wants to change the original sequence"

function Read-Seq(attr re::binding,
current-seq seq(any-type)) seq(any-type)

if empty(current-seq) then
Edit-Seq(attr, current-seq)

else
let (temp-seq seq(any-type) = 0,

of-type symbol = Tell-Set-Seq-Type(attr))

format(t, "creating a seq of type s �%", of-type);
(while Read-Yes-Or-No ("Add another element? ") do

if of-type = 'integer then
temp-seq <- append(temp-seq, Read-IntegerC"Can integer)"))

elseif of-type = 'real then
temp-seq <- append(temp-seq, Read-Real("(a real)"))

elseif of-type = 'string then
temp-seq <- append(temp-seq, Read-String("(a string)"))

elseif of-type = 'symbol then
temp-seq <- append(temp-seq, Read-Symbol("Ca symbol)"))

elseif of-type = 'boolean then
temp-seq <- append(temp-seq, Read-Boolean("(a boolean)"))

elseif of-type = 'any-type then
temp-seq <- append(temp-seq, Read-Any-TypeC"(any-type)"))

else % must be an object
temp-seq <- appendCtemp-seq,

Nake-New-Obj ect (Tell-Set-Seq-Binding(attr)))

); %end while
temp-seq

V.'/.V.--------------Functions for adding new objects-----------------
V.-------------------------------------------------------

The new object type must be a subclass of component-obj."

function Is-Valid-lew-Type (Obj-Type symbol) =

Find-Obj ect-Class(Obj-Type) in
Class-Subclasse.(Find-Object-Class('coaponent-obj), true)

V.------------------------------------------------------
" Asks f or the name of the application for which the new object is to

be a part, if the application exists, it then asks for a new object
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name. It checks that the object name does not exist. It then asks
for the type of object to be built, if it is a valid type, it builds
a new object, gets the data, and assigns it to the application."

function Add-Object (X : object) =
let (Applic-Name : symbol = Read-Symbol-Default(

"Enter the application name",
name (x)))

if defined?(find-object('spec-obj, applic-name)) then
let (obj-type : symbol =

Read-Symbol("What type of object do you want to create?"))

if Is-Valid-New-Type(Obj-Type) then
let (Obj-Name : symbol =

Read-Symbol("What is the object's name?"))

if undefined?(find-object('component-obj, Obj-Name)) then
let (New-Obj : object =

Hodify-Obj ect (make-obj ect(Obj-Type)))
Changes-Made <- true;
Set-Attrs(New-Obj, 'name, Obj-Iame);
Set-To-Parent (New-Obj,

find-object('spec-obj, Applic-name))
else

format(t, "An object named -s already exists,", Obj-Name)

else
format(t, "1-s is not a valid object type%", obj-type)

else
format(t, "Application -s does not exist in the object base.-%.",

applic-name)

------- Function for erasing objects--------------------

" Asks for the object to be deleted, checks that the object exists in the
object base, then asks if the user is sure he wants to erase that
object, if he answers yes, the object is removed from the application
definition, and erased"

function Delete-Object (A object) =

let (Obj-Name : symbol
Read-Symbol-Default("What object do you want to delete?",

name(A)))
let (Obj : object = Find-Object('component-obj, Obj-Name))

if defined?(Obj) then
(if Read-Yes-0r-No(concat("Are you sure you want to detete ",

Symbol-To-String(Obj-lame), " " )) then
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Changes-Made <- true;
Remove-From-Parent(Obj, Parent-Expr(Obj));
erase-Object(Obj)

)
else

format(t, "1s is not a component in the object base-%", Obj-Iame)
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H in-package("RU")
!! in-gra-mar('user)

#11

File name: complete.re

Description: Contains the functions to complete an application definition

Rules:
Complete-Application-Definition

Functions:
Complete-Definition

Load-Obj-Ok
Complete-Load-Obj
Generic-Exists
Generic-Ok
Complete-Generic-Obj
Do-Complete-Generic
Incomplete-Obj-OK
Complete-Incomplete-Obj
Completely-Defined

11#

% --------------------------------------------------------------
rule Complete-Application-Definition(X : object)
true -- > Complete-Definition(X)

% --------------------------------------------------------------
"Goes through all of the objects in an application definition, and if they
need further information from the user, prompts for the input. The
object classes that need this additional data are: Load-obj (load
a specific object instance), Generic-Inst (instantiate a generic), or
Incomplete-Obj (incomplete definition, contains only the name and
the object type"

function Complete-Definition (Applic : Object) =
let (Applic-Name : symbol = Read-Symbol-Default(

"Enter the application name",
name(Applic)))

let (Applic-Obj : object = Find-Object('Spec-Obj, Applic-lame))
if defined?(Applic-Obj) then

enumerate Component over
Spec-Parts (Find-Obj ect ( 'spec-Obj, Applic-Name)) do

(it Load-Obj(Component) then
Couplete-Load-Obj (Component, Applic-Obj)

elseif Generic-Inst(Component) then
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Complete-Generic-Obj (Component, Applic-Obj)
elseif Incomplete-Obj(Component) then

Complete-Incomplete-Obj (Component, Applic-Obj) )
else

format(t, "Application -s does not exist-7.", Applic-Name)

--- -- -- --- -- -- --- -- -- Complete Load - - - - - - - - - - - - - -
% -----------------------------------------------CopeeLa-------------------------

" Tests if the load-obj is valid. To be valid, it must refer to an object
in the technology base (the file must exist) and there is not already an
object by that name in the object base."

function Load-Obj-OK(Obj -Name, Path-Name : string) : Boolean =

let (Load-OK : boolean true,
File-Name string concat(Object-Path,

Path-Name,
lisp: :string-upcase(Obj-Iame),
Saved-Suffix) )

(if "File-Exists(File-Name) then
format(t, "1s does not exist in the technology base'-.",

concat(Path-Name, Obj-Name));
Load-Ok <- false

(if defined?(find-object( 'component-obj,
string-to-symbol (lisp: : string-upcase(Obj -Name), "RU" ))) then

format(t, "s already exists in the object base7", Obj-Name);
Load-Ok <- false

Load-Ok

" Takes a load-obj and converts it to a 'real' object. Checks that the
load-obj is valid, if so it calls Load-Obj to actually load it in the
object base, and erases the load-obj. (Load-Obj assigns it to the
application object). If the object to be loaded does not exist in the
technology base, the system will prompt the user for another name."

function Complete-Load-Obj(Load : Load-Obj, Applic-Obj : Spec-Obj)
let (Obj-Iame : string = File-Name-Of (Object-To-Load(Load)),

Path-Name : string = Path-Name-Of (Object-To-Load(Load)))

if Load-Obj-Ok(Obj-Name, Path-lame) then
Load-The-Object (Applic-Obj, Path-Name,

string-to-symbol(lisp: : string-upcase(Obj-Name), "RU"));
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Erase-Object(Load)
else
let (Replace? : boolean -

Read-Yes-Or-No("Do you want to specify a new object name?"))
(while Replace? and "Load-Obj-OK(Obj-Name, Path-Name) do

set-attrs(Load, 'Object-To-Load,
Read-Symbol("Enter the new name"));

Obj-Name <- File-Name-Of(Object-To-Load(Load));
Path-Name <- Path-Name-Of(Object-To-Load(Load));

if "Load-Obj-OK(Obj-Name, Path-Name) then
Replace? <-

Read-Yes-Or-No(
"Do you want to specify a new object name?")

if Replace? then % succesfully replaced the value
Load-The-Object(Applic-Obj, Path-Name,

string-to-symbol(lisp::string-upcase(Obj-Name), "RU"));
Erase-Object(I "ad)

else
Erase-Object(Load)

S-----------Complete Generics------------------------

"Since the path name may be prepended to the file name, need to strip the
path off"

function Generic-Exists(Gen-Name : string) : boolean =

defined?(Find-Object('Generic-Obj, string-to-symbol(Gen-Name, "RU")))

" Checks that the generic-inst object is valid. The generic template must
exist in the object base (it was loaded before this function was
called), the generic-inst and the generic template must have the
same number of parameters, and finally, the types of the parameters
must match"

44

function Generic-OK(Generic : Generic-Inst) : Boolean =

let (Gen-OK : boolean = true,
Gen-Name : string = File-Name-Of(Generic-To-Be-Used(Generic)))

if "Generic-Exists(Gen-Name) then
Gen-OK <- false

else
let (Generic-Template : Generic-Obj -

Find-Object('Generic-Obj, string-to-symbol(Gen-Name, "RU")))

(if size(Generic-Parameters(Generic)) -=
size(Placeholder-IDs(Generic-Template)) then
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format(t, "Wrong number of parameters, should have -d,
but have 'd-%",

size(Placeholder-IDs(Generic-Template)),
size (Generic-Parameters(Generic)));

Gen-OK <- false

else
enumerate index from I to size(Placeholder-IDs(Generic-Template)) do

let (id-type symbol = Placeholder-Type(Generic-Template)(index),
Gen-Parm any-type = Generic-Parameters(Generic)(index))

if id-type = 'symbol then
(if "lisp::symbolp(Gen-Parm) then

format(t, "Invalid parameter -s, should be a(n) -s-%",
Gen-Parm, id-type);

Gen-OK <- false
)

elseif id-type = 'an-object then
(if undefined? (Find-Object ('Component-Obj, Gen-Parm)) then

format(t,
"S should be an object, but it is not in the object base-%",

Gen-Parm);
Gen-Ok <- False

)

elseif id-type = 'string then
(if "lisp::stringp(Gen-Parm) then

format(t, "Invalid parameter -s, should be a(n) -s"%",
Gen-Parm, id-type);

Gen-OK <- false
)

elseif id-type = 'integer then
(if "lisp::integerp(Gen-Parm) then

format(t, "Invalid parameter -s, should be a(n) -s-%",
Gen-Parm, id-type);

Gen-OK <- false
)

elseif id-type = 'real then
(if "lisp::floatp(Gen-Parm) then

format(t, "Invalid parameter -s, should be a(n) -s-.",
Gen-Parm, id-type);

Gen-OK <- false
)

elseif id-type = 'boolean then
(if Gen-Parz "- 'true and Gen-Parm -= 'nil then

format(t, "Invalid parameter -s, should be a(n) "s-%",
Gen-Parm, id-type);

Gen-OK <- false
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% else id-type = 'any-type then, it's ok

Gen-Ok

Instantiates the generic, assigns it to the application definition, and
erases the generic-inst.'

function Do-Complete-Generic (Generic eri-nt
Applic-Obj Spec-Obj)

let (New-Obj-name :symbol =
string-to-symbol (File-Name-Of (Name (Generic)), "1RU"))

Instantiate-Generic (Generic);
Remove-From-Parent(Generic, Applic-Obj);
Set-To-Parent (Find-Obj ect (I 'component -obj , Iew-Obj -Name), Applic-Obj);

(enumerate Iew-Obj over Obj-List(Find-Object( 'Generic-Obj,
String-to-Symbol(File-Name-Of C

Generic-To-Be-Used (Generic)), "RU"))) do
Set-To-Parent (Find-Obj ect(C'Component-Obj, New-Obj), Applic-Obj)

Eras e-Obj ect (Generic)

" Given a generic-inst (what the application specialist enters to
instantiate a generic and the application definition object, loads
the generic from the object base, checks that the generic-inst is ok,
and completes it. If the generic is invalid, the application
specialist does get a second chance, and the generic-inst is deleted."

function Complete-Generic-Obj (Generic :Generic-Inst,
Applic-Obj :Spec-Obj)=

Load-A-Geueric(Generic-To-Be-Used(Generic));
if Generic-OK(Generic) then
format(t, "Instantiating Generic -\\pp\\V%", Generic);
Do-Complete-Generic (Generic, Applic-Obj)

else
format(t, "Invalid generic object -\\pp\\V%", generic);
% give the option to replace the name and/or object type
(let (Replace? :boolean =

Read-Yes-Or-No("'Do you want to edit the object?"))
(while Replace? and -Generic-OK(Generic) do

(if Generic-Exists(
File-Name-Of (Generic-To-Be-Used(Generic))) then

Generic <-

Edit-Generic-Inst(Generic, Generic-To-De-Used(Generic));
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% doesn't allow you to edit the name
Set-Attrs(Generic, 'name, Read-Symbol-Default("Enter the name",

name(generic)))
else

Set-Attrs(Generic, 'Generic-To-Be-Used,
Read-Symbol("Enter generic to use"));

Load-A-Generic(Generic-To-Be-Used(Generic))

if "Generic-OK(Generic) then %editing didn't fix the problems
Replace? <- Read-Yes-Or-No("Do you want to edit the object?")

if Replace? then
% successfully edited the object (otherwise, replace will be false)

Do-Complete-Generic (Generic, Applic-Obj)
else
Remove-From-Parent(Generic, Applic-Obj); % Remove from application
Erase-Object(Generic)

)

S---------Complete Incomplete-----------------------

"Checks that the incomplete object is ok. (This probably doesn't really
need to be a separate function, but this is consistent with the
other two"

function Incomplete-Obj-OK(Incomp : Incomplete-Obj) : boolean =
undefined?(Find-Object('component-obj, name(incomp))) &

Is-Valid-New-Type(Obj-Type(Incomp)) % from modify routines

"If the incomplete-obj is valid, creates a new object of the appropriate
type, gives it the new name, assigns it to the application definition,
gets all of the attribute information, then erases the incomplete-obj.
If the object class is not valid, it asks the application specialist if

he wants to change the object type or the name"

function Complete-Incomplete-Obj(Incomp Incomplete-Obj,
Applic-Obj Spec-Obj) =

format(t, "completing an incomplete object-'");

if Incomplete-Obj-Ok(Incomp) then
let (new-obj : object = make-object(obj-type(Incomp)))

Set-Attrs(new-obj, 'name, name(Incomp));
Set-To-Parent(new-obj, Applic-Obj);
form•t(t, "Complete the information for object -S:'%",

naze(incomp));
lew-Obj <- Modify-Object(new-obj);
Erase-Object(Incomp)

else
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format(t, "Invalid object -\\pp\\ "%", Incomp);
% give the option to replace the name and/or object type
(let (Replace? : boolean =

Read-Yes-Or-No("Do you want to edit the object?"))
(while Replace? and 'Incomplete-Obj-OK(Incomp) do

Incomp <- Modify-Object(Incomp);
% doesn't allow you to edit the name

Set-Attrs(Incomp, 'name,
Read-Symbol-Default("Enter the name", name(incomp)));

if "Incomplete-Obj-Ok(Incomp) then
% editing didn't fix the problem(s)

Replace? <- Read-Yes-Or-No("Do you want to edit the object?")

if Replace? then
% successfully edited the object (otherwise, replace will be false)

let (new-obj : object = make-object(obj-type(Incomp)))

Set-Attrs(new-obj, 'name, name(Incomp));

Set-To-Parent (new-obj, Applic-Obj);
Iew-Obj <- Modify-Object(new-obj);
Erase-Object(Incomp)

else

Erase-Object(Incomp)
)

"Tells if the application definition is completely defined (generic
objects instantiated, load objects loaded, and incomplete objects
completed"

function Completely-Defined(Applic : Spec-Obj) : boolean
"ex (obj) ( obj in Spec-Parts(Applic) &

(load-obj(obj) or Incomplete-Obj(obj) or Generic-Inst(obj)) )
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"! in-package("RU")
"! in-grammar('user)

#11
File name: generic.re

Description: Contains the functions necessary to instantiate a genric
object, to add generic instances to the application definition, to
edit the generic instances already in the application defintion, and
finally, to load the generic object into the object base.

Rules:
Add-Generic-Instance

Functions:
Replace-Values
Replace-In-Set
Replace-In-Seq
Load-A-Generic
Instantiate-Generic
Make-Generic-Inst
Build-Generic-Inst
Edit-Generic-Inst

II#

% ---------------------------------------------------------------------
rule Add-Generic-Instance(Applic)

true -- > Build-Generic-Inst(Applic)

" Goes through all of the attributes in the object looking for those whose

value is the same as old-value. When it finds an occurance, it repalces
the attribute with new value. It replaces all of the occurances of
old-value with new-value."

function Replace-Values(In-Object : object,
Old-Value, New-Value : any-type) =

let (attr-list : set(re::binding) = Return-Attribute-List(In-Object))
(let (attr-with-values : set(re::binding)

{atrs I (atra) atrs in attr-list f
equal( Retrieve-Attribute(In-Object, atrs), Old-Value) })

% NOTE: using the lisp equal function so it compares strings correctly

enumerate atr-to-change over attr-with-values do
Store-Attribute (In-Object, atr-to-change, New-Value)

% if attribute is a sot look for each member of the set
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let (set-attr-list :set(re::binding)=
{atrs I Catrs) atrs in attr-list & Tell-Type(atrs) = 'set})

(enumerate set-attr over set-attr-list do
if defined? CFin~d-Object-Class(Tell-Set-Seq-Type(Set-Attr))) then

%its an object
enumerate set-member over

Retrieve-Attribute(In-Object, set-attr) do
Replace-Values (Set-member, Old-Value, 1ew-Value)

else
Store-Attribute(In-Object, Set-Attr.

Replace-In-Set(Retrieve-Attribute(In-Object, set-attr),
Old-Value, 1ev-Value))

%. if attribute is a seq look f or each member of the seq
let (seq-attr-list :set~re: :binding)=

{atrs I Catrs) atrs in attr-list & Tell-Type(atrs) ='seq }

(enumerate seq-attr over seq-attr-liat do

if defined?C Find-Object-Class CTell-Set-Seq-Type(Seq-Attr))) then
enumerate seq-member over

Retrieve-Attribute(In-Object, seq-attr) do
Replace-Values (Seq-member, Old-Value, 1ev-Value)

else
Store-Attribute (In-Object, Seq-Attr,

Replace-In-Seq(Retrieve-Attribute(In-Object, seq-attr),
Old-Value, 1ev-Value))

%now look for possible object attributes that need to
%. have values replaced
let (obj-attr-list :set(re::binding)

{atrs I (atrs) atrs in attr-list ATell-Type(atrs) = 'object})
enumerate obj-attr over obj-attr-list do
Replace-Values(Retrieve-Attribute(In-Object, Obj-Attr),

aid-Value, 1ev-Value)

%--------------------------------------------------------------
" Replace. an occurance of old-value in a set with new-value"

function Replace-In-Set(The-Set set (any-type),
Old-Value, 1ev-Value any-type) :set (any-type)=

let (lew-Sot :set(any-type) The-set)
1ev-Set <- New-Set loe. Old-Value;
1ev-Set <- New-met with 1ev-Value;
New-Set
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" Replaces all occurances of old-value with new-value in a sequence"

function Replace-In-Seq(The-Seq seq(any-type),
Old-Value, New-Value any-type) : seq(any-type) =

let (Cew-Seq : seq(any-type) = The-Seq)
(enumerate index from I to size(The-Seq) do

if The-Seq(index) = Old-Value then
New-Seq(index) <- New-Value

New-Seq

" Given a generic instance to instantiate, it creates a new object and
replaces all of the placeholders with the new values. Assumes the
generic has already been loaded"

function Instantiate-Generic(Generic : generic-inst) =

let (Obj-Name : string File-Name-Of(Generic-to-be-used(Generic)))

let (generic-object =

find-object('generic-obj, string-to-symbol(Obj-Name, "RU")),
save-name = name(Generic))

set-attrs(Generic, 'name, newsymbol(name(generic))); %change the name
let (new-object : object = copy-object(

find-object('component-obj,
obj-instance(Generic-Object))))

set-attrs(New-Object, 'name, save-name);

(enumerate index from 1 to
size(Placeholder-IDs(Generic-Object)) do

Replace-Values(New-Object,
Placeholder-IDs(Generic-Object)(index),
Generic-Parameters(Generic)(index))

% if any of the import areas were assigned to internal outputs,
% they refer to the generic name, not the new object name, so replace
% the generic name with the new object name
Replace-Values(New-Object, Obj-Instance(Generic-Object), save-name)

" Loads a generic into the object base. The name of the generic should
match the name of the file. It is assumed that all generics are stored
in the same path."

function Load-A-Generic(Gen-Name : symbol)
let (File-Name : string =
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(concat (Generics-Path, symbol-to-string(Gen-Iame),
Saved-Suffix)))

if File-Exists(File-Name) then
Parse-In-File (File-Name)

else

format(t, "The generic -s does not exist in the technology base -V.",

gen-name)

% -------------------------------------------------------------
" Actually makes the generic instance."

function Make-Generic-Inst(Generic-Template : symbol) : Generic-Inst =

let (New-Inst-Name : symbol =

Read-Symbol("Enter the name for the generic instance"))

if undefined? (Find-Obj ect ('world-obj, New-Inst-Name)) then
let (New-Inst : Generic-Inst =

Edit-Generic-Inst(make-object( 'Generic-Inst),
Generic-Template) )

set-attrs(New-Inst, 'name, New-Inst-Name,
'Generic-To-Be-Used, Generic-Template);

New-Inst %. return the new instance

else
format(t, "Sorry, there's already a component named -s'%",

New-Inst-Name);
re: :*undefined* %can't make an instance

" Allows the user to add a generic instance to the application definition.
Asks for the application definition name and the generic name. It loads
the generic (if it exists), calls make-generic-inst, and finally,
assigns it to the application definition."

function Build-Generic-Inst(For-Application) =

let (Path-Name = lisp::string-upcase(
Read-String(concat("Enter the path name (include last I)",

Generics-Path))))
format(t, "Here are the existing generics:'-.");

Display-Files(concat(Generics-Path, Path-Name));

let (Generic-Template : symbol = string-to-symbol(concat(Path-Name,

lisp: :string-upcase(Read-String(

"Enter the name of the generic to instantiate"))), "RU"),
Applic-Name : symbol = 'dummy)

if File-Exists (concat(Generics-Path,
symbol-to-string(Generic-Template),
Saved-Suffix)) then

Load-k-Generic (Generic-Template);
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(if Spec-Obj (For-Application) then
e get the name of the application

Applic-Name <- Read-Symbol-Default("Enter the application name",
name(For-Application))

else
Applic-Name <- Read-Symbol("Enter the application name")

(if defined?(find-object('Spec-Obj, Applic-Same)) then
% have a valid application name

let (New-Inst : Generic-Inst =
Make-Generic-Inst (Generic-Template))

if defined?(New-Inst) then
Set-To-Parent(New-Inst, Find-object('Spec-Obj, Applic-Name))

else
format(t, "Application -s does not exist'-%", Applic-Name)

)
else

Format(t, "Object -s does not exist in the technology base-%",
Generic-Template)

"Given a generic-inst, allows the user to modify all the attributes.
If the object is just being created, it must initialize the
generic-parameters sequence to be the same length as the parameters
in the generic template."

function Edit-Generic-Inst(Gen-Inst Generic-Inst,
Generic-Template symbol) : object =

(let(Generic : Generic-Obj = Find-Object(QGeneric-Obj,
string-to-symbol(File-Name-Of(Generic-Template), "RU") ) )

enumerate index from I to size(Placeholder-IDs(Generic)) do
"let (Parm-Type symbol = Placeholder-Type(Generic)(index),

Placeholder any-type = Placeholder-TDs(Generic)(index),
Current-Val any-type = Generic-Parameters(Gen-Inst) (index))
(if empty(Generic-Parameters (Gen-Inst)) then

% it's a new instance
enumerate indexl from I to size(Placeholder-IDs(Generic)) do

Generic-Parameters(Gen-Inst) <-
append( Generic-Parameters(Gen-Inst),

re::*undefined* ) % initialize seq

% if there aren't enough parameters, pad the sequence
(while size(Generic-Parameters(Gen-Inst)) <

size(Placeholder-IDs(Generic)) do
Generic-Parameters(Gen-Inst) <-

append( Generic-Parameters(Gen-Inst),
re::*undefined* )%
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%. if there are too many parameters, truncate
Generic-Parameters CGen-Inst) <-

subseqCGeneric-Parameters(Gen-Inst), 1,
size CPlaceholder-IDs (Generic)));

if Parm-Type = 'symbol or Parm-Type = 'an-object then
Generic-Parameters (Gen-Inst) (index) <- Read-Symbol-Default(

concat("Enter a symbol for "1,

symbol-to-stringCPlaceholder)), Current-Val)

elseif Parm-Type = 'string then
Generic-Parameters (Gen-Inst) (index) <- Read-String-Default C

concat("Enter a string for ", Placeholder), Current-Val)

elseif Parm-Type = 'integer then
Generic-Parameters (Gen-Inat) (index) <- Read-Integer-Default C

concat("Enter an integer for ",
lisp: :princ-to-string(Placeholder)),
Current-Val)

elseif Parm-Type = 'real then
Generic-Parameters (Gen-Inst) (index) <- Read-Real-Default C

concat("Enter a real for ",
lisp: :princ-to-string(Placeholder)), Current-Val)

elseif Pam*-Type = 'boolean then
Generic-Parameters (Gen-Inst) (index) <- Read-Boolean-Default (

concat('Enter a symbol for ",

symbol-to-string(Placeholder)), Current-Val)

else % Pama-Type = 'any-type then
Generic-Parameters (Gen-Inst) (index) <- Read-Symbol-Default(

concatC'Enter any-type for ". Placeholder),
Current-Val)

Gen-Inst % return the new and improved generic instance

E-34



in-package("RU")
1! in-grammar('user)

#11
File name: build-generic.re

Description: This file is to help the software engineer create
generic objects

Rules:
Build-Generic
Save-Generic

Functions:
Build-A-Generic
Save-A-Generic

Il#

rule Build-Generic(Gen : object)
true -- > Build-A-GenericO)

rule Save-Generic(Gen : object)
true -- > Save-A-Generic(Gen)

"Aids the software engineer in building generics. The software engineer
must first create an instance of an object, including the placeholders.
The name of this object is the obj-instance attribute for the generic
template. Then the system prompts the software engineer for the
placeholder type and then asks for a value of that type.

function Build-A-Generic() =

let (Obj-Inst : symbol =
Read-Symbol("Enter the name of the object instance"),

Generic-Name : symbol =
Read-Symbol("Enter the name of the generic"),

generic : generic-obj = make-object('generic-obj))

if defined?(Find-Object( 'Generic-Obj, Generic-lame)) then
format(t, "Generic -s already exists'%", Generic-Name);
erase-object (generic)

elseif undefined? (Find-obj ect( ' component-obj, Obj-Inst)) then
format(t, "Object -a doesn't exist-%", obj-inst)

else
format(t, "assigning instance to -\\pp\\ %",

find-object(' component-obj, obj-inst));
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set-attrs(generic, 'name, Generic-name);
set-attrs(generic, 'obj-instance, Obj-Inst);

(let (ID-List : seq(any-type) = 0,
Type-List : seq(symbol)= =,
Place-Type symbol = 'integer)

(while Read-Yes-Or-No
("Do you want to add more generic parameters?") do

format(t, "Valid types are: -s and -s-%",
Valid-Types, 'an-object);

Place-Type <- Read-Symbol("Enter it's type");
if (Place-Type in Valid-Types) or Place-Type = 'an-object then

let (fun-name : symbol =
string-to-symbol(lisp: :string-upcase(concat("Read-",

symbol-to-string(Place-Type))), "RU"))

(if Place-Type = 'an-object then
(let (Place : symbol =

Read-Symbol( "Enter the placeholder"))
if Valid-Placeholder(

Find-Object('Component-obj, obj-inst),
Place, Place-Type) then

ID-List <- append(ID-List, Place)

else
format (t, "Invalid placeholder'-")

)
else

(let (Place : symbol =
funcall( fun-name, "Enter the placeholder"))

if Valid-Placeholder(
Find-Object('Component-obj, obj-inst),
Place, Place-Type) then

ID-List <- append(ID-List, Place)

else
format(t, "Invalid placeholderlf.")

)

Type-List <- append(Typr,-List, Place-Type)

else
format(t, "s is an invalid type in this system-%", Place-Type)

set-attrs(generic, 'placeholder-ids, ID-List);
set-attrs(generic, 'placeholder-type, Type-List)

Format(t, "What objects are needed to go with this generic?'%");
while Read-Yes-Or-No("Add another object ") do

let (Obj-to-add : symbol =
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Read-Symbol("Enter the name of the object"))

defined?(Find-Object( 'component-obj, Obj-To-Add)) -- >

Obj-to-add in Obj-List(Generic);
undefined?(Find-Object( 'component-obj, Obj-To-Add)) -- >

format(t, "Object -s does not exist,
cannot add to object list-%",
Obj-To-Add)

" Saves a generic to a file. The file name will match the name of the

generic. The generic is saved in two parts, the generic object itself,
and the object instance."

function Save-A-Generic(Gen : object) =

let (Obj-Name : symbol =
Read-Symbol-Default ("Enter generic object to save", name(Gen)))

let (Cen-Obj : Generic-Obj = find-Object('Generic-Obj, Obj-Name),
File-Name string = concat(Generics-Path,

lisp: : string-upcase(Read-String(
concat("Enter the path (include last I) ",

Generics-Path))),
symbol-to-string (Obj-Name),
Saved-Suffix))

if File-Exists(File-Name) then
format(t, "A generic called -s has already been saved-%",

Obj-Name)
else

if undefined?(Gen-Obj) then
format(t, "Object -s does not exist-", Obj-Name)

elseif undefined?(
find-object( 'component-obj, Obj-Instance(Gen-Obj))) then

format(t, "The object instance -s does not exist in
the object base'-%",
Obj-Instance (Gen-Obj))

elseif Read-Yes-Or-No(concat("Do you really want to save ",

File-name, " ")) then % save the object to a file

rd-on(File-name); %,redirect standard output to file
format(t, "-\\pp\\ "V, Gen-Obj);
format(t, "'\\pp\\", find-object( 'component-obj,

Obj-Instance(Gen-Obj)));
format(t, "V");

(enumerate obj over obj-list(Gen) do
if defined?(Find-Object('Component-Obj, obj)) then

format(t, "-\\pp\\-%", find-object ('component-obj, obj));
format(t, "'7,")

rd-off 0)
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"Checks to make sure that the placeholder actually exists in the

object instance"

function Valid-Placeholder(Obj : object, Placeholder any-type,
Place-Type symbol) =

let (OK : boolean = false,
attr-list : set(re::binding) = Return-Attribute-List(Obj))

(let (attr-uith-values : set(re::binding) =
{atrs I (atrs) atrs in attr-list &
equal( Retrieve-Attribute(Obj, atrs), Placeholder) })

% NOTE: using the lisp equal function so it compares strings correctly

if "empty(attr-with-values) then
OK <- true

else

% if attribute is a set look for each member of the set
(let (set-attr-list : set(re::binding) =

{atrs I (atrs) atrs in attr-list &
Tell-Type(atrs) = 'set})

enumerate set-attr over set-attr-list do
if defined?(Find-Object-Class(Tell-Set-Seq-Type(Set-Attr))) then

%its an object
(enumerate set-member over Retrieve-Attribute(Obj, set-attr) do

if Valid-Placeholder(Set-Member, Placeholder, Place-Type) then
Ok <- true

)

else
OK <- Placeholder in Retrieve-Attribute(Obj, set-attr)

if 'OK then
% if attribute is a seq look for each member of the seq

(let (seq-attr-list: set(re::binding)
{atrs I (atrs) atrs in attr-list &
Tell-Type(atrs) = 'seq })

enumerate seq-attr over seq-attr-list do
if defined?( Find-Object-Class(Tell-Set-Seq-Type(Seq-Attr))) then

(enumerate seq-member over Retrieve-Attribute(Obj, seq-attr) do

if Valid-Placeholder(Seq-member, Placeholder, Place-Type) then
OK <- true

)
else

OK <- Placeholder in Retrieve-kttribute(Obj, seq-attr)
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if 0OK then
%. now look for possible object attributes that need to have
% values replaced
(let (obj-attr-list :set(re::binding)

{atrs I (atra) atrs in attr-list &
Tell-Type(atrs) = 'object})

enumerate obj-attr over obj-attr-list do
Valid-Placeholder(Retrieve-Attribute(Obj, Obj-Attr),

Placeolder Place-Type)

OK
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"I in-package("RU")
"! in-grammar('user)

#11
File name: Display-Files

Description: Given a path, displays the files in that path that end
with the saved-suffix

Rules:
None

Functions:
Display-Files
Path-Name-Of
File-Name-Of

II#

"Displays all the file names in the given path that have the saved-suffix
ending"

function Display-Files (Path-name : string) =

let (file-list : set(any-type) = lisp: :Directory(path-name))
enumerate f over file-list do

let (f-name : string = arb( {s I (s:string)
pathname-name(f) = E$s, $Saved-SuffixJ}))

format(defined?(f-name), "-s'/.", f-name)

" Given a file name with it's path, returns just the file name portion"

function File-Name-Of(Full-Path : symbol) : string =

if #\/ -in symbol-to-string(Full-Path) then
%. no path name, return input
symbol-to-string(Full-Path)

else
arb ( {s I (s : string)

symbol-to-string(Full-Path) = -..,#\/, *s] 1 #\/ in s } )

" Given a file name with it's path, returns just the path name portion"

function Path-Name-Of(Full-Path : symbol) : string =

if #\/ -in symbol-to-string(Full-Path) then
Sno path name, just return
to#$
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else
let(filenm string = File-Name-Df (Full-Path))

a~rbC (s (a :s string) symbol-to-string(Full-Path)=
E$s tilenmj }
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in-package ("RU")
H in-grammar('user)

#11
File name: erase.re

Description: Erases an application definition

Rules:
Erase-Rule

Functions:
Eras e-Obj s

11#

rule Erase-Application-Definition(x : spec-obj)
true

Erase-Obj s(x)

" Asks the user which application definition to erase, the erases all
objects in the object base that have that application as an ancestor"

function Erase-Objs(X: Spec-Obj) =

let (applic-to-erase : symbol =

Read-Symbol-Default (
"Which application definition do you want to erase?", name(x)))

let (applic : Spec-Obj = Find-Object('Spec-Obj, Applic-To-Erase))
if defined?(Applic) then

(enumerate Obj over {an-obj I (an-obj) world-obj(an-obj) &
up-to-root(an-obj) = applic} do

format(debug-on, "Erasing object -\\pp\\ -%", obj);
Erase-Object (Obj)

Erase-Object (Applic);
foraat(t, "Erased application definition -s-%1", applic-to-erase)
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!! in-package("RU")
H in-grammar('user)

#11

File name: globals.re

Description: Contains all the global constants and variables.

1I

constant Saved-Suffix string = "-SAVED"

constant Generics-Path string = "./generics/"

constant Applic-Path string = "./applics/"

constant Object-Path string = "./objs/"

var Fatal-Error : boolean = false

var Changes-Made boolean = false

vat Debug-On : boolean = false

var Semantic-Checks-Performed : boolean = false
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!! in-package("RU")
H in-grammar('user)

#11
File name: menu.re

Description: Contains functions that will query the user for a selection
from a list of possible choices

Functions:
Make-Menu
Make-Object-Menu

%1-

" Given a sequence of symbols and a prompt string, this function displays
the prompt, lists all of the symbols in the sequence, and prompts the
user for a selection. If the selection is not in the proper range
(i.e., between 1 and the size of the sequence), it displays an error
message and reprompts for a selection"

function Make-Menu(Menu-Choices seq(symbol),
Prompt : string) : integer =

let (Response : integer = size(Menu-Choices) + 1)
(while Response > size(Menu-Choices) or Response < I do

format(t, "8s %-", Prompt);
(enumerate index from I to size(Menu-Choices) do

format(t, "d ) -s -%", index, Menu-Choices(index))

Response <- Read-Integer("");
if Response > size(Menu-Choices) or Response < 0 then

format(t, "Invalid Response %")

); a end while
Response

" Same as above execept it takes a list of objects and uses the name

to display the choices"

function Make-Object-Menu(Menu-Choices : seq(object),
Prompt : string) : integer =

let (Response : integer = size(Menu-Choices) + 1)
(while Response > size(Menu-Choices) or Response < 1 do

format(t, "a -%", Prompt);
(enuserate index from 1 to size(Menu-Choices) do

if defined?(name(Menu-Choices(index))) then
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format(t, "d ) -s %"., index, name(Menu-Choices(index)))
else

format(t, "'d ) -\\pp\\ -%", index, Menu-Choices(index))

Response <- Read-Integer("");
if Response > size(Menu-Choices) or Response < 0 then

format(t, "Invalid Response "")
% end while

Response
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!H in-package("RU")
!' in-grammar('user)

#II
File name: obj-utilities.re

Description: This file contains functions useful when manipulating
objects, regardless of the domain model being used.

Rules:
none

Functions:
Return-Attribute-List
Tell-Set-Seq-Type
Tell-Set-Seq-Binding
Get-Attribute-List (For testing and debugging)
Tell-Type
Copy-Obj ect

II#

"The type-map gives a conversion from the Refine representation of
data types to simple symbols (Note: strings are handled differently so
they aren't in this list"

var Type-Map : map(symbol, symbol) =
{I 're::powerset-op -> 'set,

're: :powersequence-op -> 'seq,
're::symbol-op -> 'symbol,
're::real-op -> 'real,
're::integer-op -> 'integer,
're::boolean-op -> 'boolean,
're: :character-op -> 'character,
're: :any-type-op -> 'any-typea}

" REFINE's attributes"
var predefined-attributes : set(symbol) =

{ 'RE: : -- TOP-LEVEL-PREPENDUM--,
'RE: : STORED-PROPERTIES,
'RE: : BROWSER-NENU-STRIIG-FOR-IAMED-OBJECT--SAME-PACKAGE,
'RE: : BROWSER-NERU-STRING-FOR-IAMED-OBJECT--OTHER-PACKAGE,
'RE:: ORDERED-CHILDREU-ATTRIBUTES,
'RE:: CONSTRUCTION-FUNCTIOI-ATTRIBUTE-ARGS,
'RE:: CONSTRUCTIOJ-FUNCTIOI,
'RE:: REFIIE-INTERNAL?,
'RE: :QUOTED?,
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'RE: :LISP-GETFI,
'RE: :LISP-INITIALIZE,

'RE: :LISP-FUNCTION,
'RE::ALREADY-WARNED-ABOUT,
'RE: :SUBPART-OF,
'RE: :SUBPARTS,
'RE: :COMPILATIOIS,

'RE:: ZL-DOCUMEITATION,
'RE: :USED-BY,
'RE: :MENTIOIED-BY,
'RE: :DATA-TYPE,
'RE:: CHILD)REN-ENVIRONMENTS,
'RE:: PARENT-ENVIRONMENT,
'RE: :COPY-OF,
'RE:: BINDING-VALUE-OF,
'RE:: PARENT-LINK-NAME,

'RE:: PARENT-LINK,
'RE: :CLASS,
'RE: :ELEMENT-OF,
'RE:: PROPS-FROM-READER}

% -------------------------------------------------------------------------
" Given an object, returns a set of bindings that represent the attributes
removing the predefined attributes"

function Return-Attribute-List(Obj : object) : set(re: :binding)
{atrs I (atrs) (atrs in class-attributes~instance-of (obj), true))

- (name Catrs) in predefined-attributes)}

% -------------------------------------------------------------------------
" Returns all cl the subclasses of an object, NOT including the original
object class"

function Get-SubNodes (obj -type: re::bin~din~g) : set~re: :binding)=
let Ctempset : set(re: :binding) = class-subclasses~obj-type, false))
tempest less obj-type %. don't include the original object type

" This function determines the type of the set/seq attribute. If the type
is an object, it returns the object class name"

function Tell-Set-Seq-Type(attr : re: :binding) : symbol
let (its-type : object = re: :base(re: :range-type(re: :data-type(attr))))

if re::class(its-type) = 're::binding-ref then
re: :bindingname(its-type) % returns 'string or '(object-type)

else
Type-Map(re::class (its-type))
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"Returns the type of a set or sequence as a binding (assumes its
some object type)"

function Tell-Set-Seq-Binding(attr : re: :binding) : re: :binding =

re: :ref-to(re: :base(re: :range-type(re: :data-type(attr))))

"Displays all of the user-defined attributes and their types. If want
to see all the attributes, don't comment any lines, if only want to
see the user-defined attributes, comment out the line: if "(name(atr)
in predefined-attributes) then"

function Get-attribute-list(obj : object)=
let (attr-list : set(re::binding) z

class-attributes(instance-of(obj), true))
format(t, "attributes are: -%1");

enumerate atr over attr-list do
% if "(name(atr) in predefined-attributes) then

format(t, "attr: -s type -s -%", atr, tell-type(atr))

.. -------------------------------------------------------
" Goes through the abstract syntax tree for the representation of the

attribute to find out the attribute's data type. Since all attributes
are maps, we need to look at the range-type of the data-type. Both
objects and strings have the same representation at this level so
there's a special test for those. Otherwise, it uses the Type-Map to
translate the type to a simpler-form."

function Tell-Type(attr : re: :binding) : symbol =

let (its-type : object = re::range-type(re::data-type(attr)))

if re: :class(its-type) = 're::binding-ref then
if defined? (re: : bindingname (its-type)) and-then

re::bindingname(its-type) = 'string then
'string

else
'object

else
Type-Nap(re: : class(its-type))

% -------------------------------------------------------------------------
" makes a coly o an object, the calling routine must name the new object
used instead of copy-term because copy-term cannot be used with unique
names classes see Refine manual pg 3-194. An alternative could be to
undefine the name., then copy it. This is a problem if the object
contains any named objects. This function handles any case (that I
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can think of)"

function Copy-Object(from-obj :object) object

let (Attrs 3et~re::binding) = Return-Attribute-List~from-obj),
To-Dbj object = make-object(name(instance-of(from-obj))))

(enumerate attrib over Attrs do

%. if it's an obje(ct, copy the object and assign the new
%. one to the attribute
(if tell-t,,pe(attrib) = 'object then

let (sub-obj :object =
Col y-Object~retrieve-attribute~from-obj, attrib)))
store-attribute(to-obj, attrib, sub-obj)

elseif tell-type(attrib) = 'set then

let (temp-set :set~any-type) = (})
%. if it is a set of objects, copy each object,
%. otherwise copy the set
Cif defined? (Find-Object-ClassCTell-Set-Seq-Type(Attrib)))

then %. object
enumerate Set-Item over

Retrieve-&ttribute(From-Gbj, Attrib) do

eleTemp-Set <- Temp-Set with Copy-abject(Set-Item)

Temp-Set <- Retrieve-Attribute(From-Obj, Attrib)

Store-Attribute(To-Obj, Attrib, Temp-Set)

elseif tell-type~attrib) = 'seq then

let (temp-seq :seq(any-type)=[)
%. if it is a seq of objects, copy each object,
%. otherwise copy the seq
(if defined? (Find-Object-Class(tell-set-seq-type(attrib)))

then % = object
enumerate seq-item over

retriev.-attribute(from-obj, attrib) do
temp-seq <- append(temp-seq, copy-object(seq-item))

else
temp-seq <- retrieve-attribute(from-obj, attrib)

store-rttribute(to-obj, attrib, temp-seq)

else Vnot a set, seq, or object
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store-attribute(to-obj, attrib,
retrieve-attribute~from-obj, attrib))

)% end if
%; end enumerate

To-Obj % return the object
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in-package("RU")
! in-grammar('user)

#11

File name: read-utilities.re

Description: Contains functions that read in different data types. They
perfrom all type checking so the calling program is guaranteed to get a
value of the correct type. The read with defaults allows the calling
program to send a default value. If the user enters return, this value
is returned.

Rules:
None

Functions:
Read-String
Read-Integer
Read-Real
Read-Symbol
Read-Boolean
Read-Any-Type
Read-Yes-Or-No
Read-String-Default
Read-Integer-Default
Read-Real-Default
Read-Symbol-Default
Read-Boolean-Default
Read-Any-Type-Default

II#

X what read-input returns if given a carriage return
var Null-Value : any-type = ""

" Used to tell the valid types that can be read using these functions
This will allow programs to test if a symbol is in Valid-Types so it
can build the function call and use the lisp funcall call to invoke
the proper program. This avoids big if-then-elseif statements "

var Valid-Types : set(symbol) = {'string, 'integer, 'real, 'symbol,
'boolean, 'any-type}

XX------------------------ Read Functions-

X Contains functions to read in data of a specific data type. If the
% input is not valid, it reports the error, and prompts for another

% value

%-----------------------------------------------
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function Read-String(Prompt : string) : string =

(if "empty(Prompt) then
format(t, "A: ", Prompt)

let ( str : any-type = read-input())
(if lisp: :numberp(str) then % if a number was read,

str <- lisp: :princ-to-string(str) % convert it to a string

(while -lisp::stringp(str) do
format(t, "'7.Invalid input, try again: "));
str <- read-inputo)

str

function Read-Integer(Prompt : string) : integer =
(if "empty(Prompt) then

format(t, "-A:", Prompt)

let ( int : integer = read-inputo)
(while "lisp::integerp(int) do

format(t, "UInvalid input, try again: ");
int <- read-input()

int

function Read-Real(Prompt : string) : real =
(if "empty(Prompt) then

format(t, "-A: ", Prompt)

let ( real-num : real = read-inputo)
(while "lisp::floatp(real-uum) do

format(t. "%Invalid input, try again: '9;
real-num <- read-input()

real-num
.- ------------------------------------------------------------------------
function Read-Symbol(Prompt : string) : symbol =

(if "empty(Prompt) then
format(t, "-A: ", Prompt)

let ( sym : string = read-inputo)
(while "lisp::stringp(sym) do

format(t, "iUInvalid input, try again: ");
sym <- read-input()

string-to-symbol(lisp: :string-upcase(sym), "RU")
% VOTE: I convert the string to upper case so that it can be compared to
% other symbols string-to-symbol returns a symbol that is case sensitive
% (it is quoted by 1's)
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function Read-Boolean(Prompt : string) : boolean =
(if -empty(Prompt) then

format(t, "'A: ", Prompt)

format(t, "(T/t for true, F/f for false): "1);
let(t-or-f : string = read-inputo)

(while -(t-or-f in {"F", "f", "T", "t"}) do
format(t, "'%Invalid input, try again: ");

t-or-f <- read-inputo)

t-or-f in "T", 't"}

function Read-Any-Type(Prompt : string) : any-type =
(if "empty(Prompt) then

format(t, "'A: ", Prompt)

read-input()

function Read-Yes-Or-No(Prompt : string) : boolean =
lisp: :y-or-n-p(prompt)

% .----------------- Read Functions With Defaults,
= Read functions that allow for a default value

% --------------------------------------------------------------

function Read-String-Default(Prompt : string, Default : string) : string =
(if "empty(Prompt) then

format(t, "All, Prompt)

format(t, " (-A): ", default);
let ( str any-type = read-inputo)

(if lisp: :numberp(str) then % if a number was read,
str <- lisp: :princ-to-string(str) % convert it to a string

(while "stringp(str) and "(lisp::equal(str, lull-Value)) do
format(t, "-%Invalid input, try again: ');
str <- read-input()

if lisp::equal(str, Null-value) then
Default

else
str

&53



% For reading in integers and real numbers, read in as a string (so it
% can be compared to the null-value and check if the string is really an
% integer or real number (using the read-from-string function).
% Read-from-string returns two values, the first is what's in the
%. string, the second is the index of the first character NOT read.

-----------------------------------
function Read-Integer-Default(Prompt string,

Default integer) : integer =
(if "empty(Prompt) then

format(t, "-A:", Prompt)

format(t, " (d): ", default);
let ( int : string = lisp: :read-lineo)

(while -lisp: :integerp(lisp: :read-from-string(int)) and
int -= lull-Value do

format(t, "-.Invalid input, try again: ")9;
int <- lisp: :read-lineo)

if int = Null-value then
Default

else
lisp: : read-from-string(int)

function Read-Real-Default (Prompt : string, Default : real) : real =
(if "empty(Prompt) then

format(t, "'A: ", Prompt)

format(t, " ('d): ", default);
let ( real-num : string = lisp: :read-lineO)

(while "lisp: :floatp(lisp: :Read-from-string(real-num))
and real-num -= Null-Value do

format(t, "-%Invalid input, try again: ");
real-num <- lisp: :read-line()

if real-num = Null-value then
Default

else
lisp: : read-from-string(real-num)

function Read-Symbol-Default(Prompt : string, Default : symbol) : symbol =
(if "empty(Prompt) then

format(t, "'A: ", Prompt)

format(t, (-A): ", default);
let ( sym : string = read-inputo)

(while "lisp::stringp(sym) and sym "= Null-Value do
format(t, "UInvalid input, try again: "1);
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sym <- read-inputC)

if sym = Null-value then
Default

else
string-to-symbol(lisp: : string-upcase(sym), "RU" )

% NOTE: I convert the string to upper case for same reason described in
% Read-Symbol function

function Read-Boolean-Default(Prompt string,
Default : boolean) : boolean =

(if "empty(Prompt) then
format(t, "1A ", Prompt)

format(t, "(T/t for true, F/f for false:) ");
format(t, " (-A): ", default);
let(t-or-f : string = read-inputo)

(while "(t-or-f in {"F", "f", "T", "t"}) and t-or-f N= lull-Value do
format(t, "'-.Invalid input, try again: "));
t-or-f <- read-input()

if t-or-f = Null-value then
Default

else
t-or-f in {"T", "t"}

function Read-Any-Type-Default (Prompt : string,
Default : any-type) : any-type =

(if "empty(Prompt) then
format(t, ",A: e Prompt)

format(t, " (-A): ", default);
let (ans : any-type = read-inputo)

if lisp: :equal(ans, Null-value) then
%. use the lisp::equal incase of strings

Default
else

ans
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